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ABSTRACT

Multi-label classification has gained significant importance due to its wide range

of applications in the recent past and thereby attracted researchers too. In this kind of

classification, a classifier model is trained, and once trained, it assigns a set of one or

more predefined labels for a given unknown sample. It is carried out using either a data

transformation approach or algorithm adaptation approach or a hybrid approach. The data

transformation approach utilizes traditional classifier algorithms by transforming the data

and may, therefore, lose correlations amongst labels and generally provide lesser prediction

accuracy. On the other hand, the algorithm adaptation approach alters the classification

algorithms rather than the data and thus provides better prediction accuracy as compared

to data transformation. The third approach combines existing methods.

k-nearest neighbors (kNN) is one of the popular choices for algorithm adapta-

tion based multi-label classification. The kNN-based multi-label classification method uses

information extracted from neighbors of multi-label instances to perform classification.

However, existing kNN based approaches reported in the literature have explored only fea-

ture similarity while searching the neighbors in multi-label data. ML-kNN is one such

existing algorithm that provides better predictive accuracy compared to all other existing

algorithms.

An instance in multi-label data is associated with a set of labels. Thus, label

correlation may play a crucial role in the classification process. Therefore, a newer method

may be designed that will incorporate not only the feature similarity but also the label

dissimilarity while determining the neighbors.

The thesis presents research work that proposes a novel kNN based algorithm

called Multi-Label Classification using Feature similarities and Label Dissimilarities (MLFLD).

It is based on the computation of feature similarity and labels dissimilarity. The proposed

algorithm assigns weights to the neighbors. The weight of a particular neighbor of an in-

stance is either incremented or decremented based on the features and labels of the neighbor

and the example under consideration. The computed weight is considered during the se-

lection of neighbors.

Experiments are carried out to test and compare the performance of the proposed

algorithm with the existing ones. Performance testing is carried out using i) cross-validation

on five benchmark datasets, ii) using the train-test method on thirteen smaller benchmark

datasets, and iii) two large benchmark datasets using in all ten standard performance



x

measures. From the performance analysis, it is seen that the proposed method outperforms

existing data transformation based and algorithm adaptation based algorithms, including

ML-kNN.

Algorithm MLFLD, although, outperforms existing approaches, it is observed that

it is unsuccessful in predicting any relevant labels for a few instances and thus resulted in a

Not a Number (NaN) value for a few performance measures. Further, this work presents an

extended version of algorithm MLFLD, called MLFLD-MAXP. This algorithm overcomes

the issue of NaN and thus also enhances the classification performance.

Algorithms MLFLD and MLFD-MAXP, when tested with cross-validation, show

significant performance improvements. It is observed that both algorithms are sensitive to

outlier data as like existing algorithms such as ML-kNN.

Generally, the Euclidean distance measure is used for the computation of feature

similarity. Both algorithms are tested to observe the effect of different distance measures

for not only feature similarity but also label dissimilarity. It is noted that with cross-

validation using the algorithm MLFLD-MAXP, Manhattan and Jaccard triplet performed

better in terms of average rank obtained over ten metrics, whereas, for train-test, MLFLD-

MAXP, Euclidean and Hamming triplet is found to be better. Also it is noticed that the

use of Manhattan distance needed the least amount of computation time while Minkowski

needed maximum computation time. The computation time needed in the case of Euclidean

distance is moderate as expected.

The use of multi-label feature and/or instance selection algorithms for prep-

processing is found to be beneficial, as in the case of single-label classification. Use of

either instance selection using sampling or combined multi-label instance and feature se-

lection provides significant performance enhancements with lesser training time.

MLFLD and MLFLD-MAXP presented in this thesis thus may be potential can-

didates for performing effective multi-label classification. Further investigations are needed

to validate the performance of the proposed algorithm using datasets with both numeric

and categorical features.
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Chapter 1

Introduction

1.1 Preamble

Nowadays, the multi-label framework is used in a variety of domains like object

recognition, scene annotation, object detection from videos, video annotation, and human

attribute recognition [1]. In the field of product design, images of products are annotated by

designers with multiple labels. If products are associated with description documents, then

text categorization (TC) is used to categorize these images according to their description.

Thus multi-label classification is also useful in such domains.

In any organization, a lot of data is generated in day to day work. Rapid growth

in the area of information technology has also steered an increase in data over the last few

decades. When data increases, it becomes difficult to access the desired information. So

it is necessary to categorize data for proper organization and quick access. The data can

be classified by either unsupervised learning or supervised learning, through clustering of

unlabeled or classification of labelled data.

Classification is very commonly used task in mining. It is referred to as supervised

learning as it involves a train set having known instances that are used to train the model

and then tested on other known instances. A train set is a set of records. A record is

expressed by a set of attributes, and it is associated with the class which represents a

category of that record. The trained models are used for the classification of unknown

instances. Many scenarios in day to day life reflect the application of supervised learning

1
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[1]-[11]. For example, an image may represent a beach or a forest. A video can express a

desert or a mountain. Forts have an important place in history as well as architecture.

A lot of data from different domains is already available in the form of datasets.

Experts from the particular field have associated records from these domains with appro-

priate classes. M. L. Zhang et al. [12] have used an image dataset. These images are

divided into groups according to the type which is manually assigned by relevant experts.

Xin Chen et al. [10] collected problems faced by students doing engineering. They used

twitter for data collection and used a specific hashtag to filter the required data. This task

of manually associating labels to data is automated by classification. Classification is the

task that helps to design models which can assign labels to unseen data by using knowledge

gained from already labelled data.

In conventional classification, a record is associated with only one class. But in

many real-world scenarios observed nowadays, a record cannot be categorized to only one

label. It better reflects the situation if it is associated with one or more labels. The later

scenario is termed as multi-label classification (MLC). It is a process which correlates a set

of predefined categories to an unseen entity according to its characteristics.

A set of photographs can be grouped according to objects in them such as people,

traffic, road, hotels, restaurants, forest, trees and much more. When relevant images are

grouped, then they can be labelled with a suitable class. For example, images in the urban

area can be categorized as buildings, roads, grounds. Images related to the road can be

further categorized to reflect traffic scenario. It helps to percept further information by

labelling traffic images to indicate whether traffic is dense or sparse.

Several videos are available on Youtube (www.youtube.com) that are tagged by

multiple labels.

Just now our Government has done an announcement of the scheme for yellow

ration cardholders to avail medical facilities under Ayushman Bharat Scheme. News for

such announcement is related to more than one categories, the government as well as health.

Blood reports of a patient are useful to diagnose diseases. It may reveal general

symptoms of one or more diseases. It helps doctors to suggest specialized pathological tests

further if required.

Chapter 1 | Introduction
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Because of today’s changing lifestyle, shopping malls are preferred by many peo-

ple for purchasing where each product may be assigned more than one category. These

categories help to decide which products should be kept together to increase sale. Online

shopping has changed the scenario of the market. However, since many options of shopping

are available to people on one click of a smartphone, it has become challenging to attract

customers. Thanks to digital marketing, that keeps an eye to understand shopping habits

or likings of the visitor. This collected data is utilized to categorize customers having sim-

ilar taste so that launching of a new relevant product can be broadcasted to such group

together.

In the text categorization (TC), text documents are categorized according to the

contents of documents. Newsletters can be classified according to news involved in them.

Sometimes a story may be related to multiple categories. Thus it is again an example of

multi-label classification. Gmail (http://www.gmail.com) allows its users to attach various

labels to an email. For instance, if person X is working in some organization, then his/her

emails can be categorized as personal or official. An official email can be further classified as

department-level or institute-level. As per manual of the National Board of Accreditation

for Engineering Tier II, a record of students placed, doing higher studies and working as an

entrepreneur is required in Criterion 4 as well as Criterion 7. BBC (http://www.bbc.com)

also assigns multiple labels for a news article. News published by BBC that “First cookies

baked in space oven by astronauts” is associated with space as well as environment. As

announced by Indian Space Research Organization (ISRO) on 23rd January 2020, “Vyom

will be the first robot who will work as an astronaut for a space mission without human. It

will help to monitor how the human system will behave in the environment to control life

support system”. This news is associated with space, environment and artificial intelligence.

BBC has also labelled this news as World, Asia and India.

Thus multi-label classification has gained significant importance and application

in the recent past and thereby attracted researchers too.

1.2 Taxonomy of classification

Multi-label data can be classified in various ways; namely, label-based, level-based

and based on learning framework.
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1.2.1 Label-based Taxonomy

Let us consider a news story to be classified. Suppose it is to be checked whether

this news story belongs to health class or not. Such type of classification is called single-

label classification (SLC) as there is only one category health. Suppose there are two

classes, namely health and politics, and if it is to be checked whether news story under

consideration belongs to either health or politics. Such type of classification is called as

binary classification as it involves two categories. Let there be three classes, namely health,

sports and politics. Again it is to be checked whether news story belongs to any of these

classes. This type of classification is called a multiclass classification that involves more

than two categories. Now sometimes it is observed that contents of a news story may be

associated with more than one categories. That is, it may belong to either health category,

or health as well as sports categories, or it may belong to all the three categories. Such

type of classification is called as multi-label classification (MLC) [3] [2] [5] [7] [8].

Taxonomy of classification is given below:

� Single label classification

– Every input instance is associated with only one output label.

� Binary classification

– Label space consists of only two labels.

� Multiclass classification

– Label space consists of more than two labels.

� Multi-label classification

– An input instance is associated with a set of labels.

1.2.2 Taxonomy based on learning frameworks

According to the number of instances and labels associated with each other, four

types of learning frameworks exist [21] as shown in Figure 1.1.
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Figure 1.1: Learning Frameworks

1. Single-label learning (SLL or SISL)

Single-instance single-label learning (SISL) is nothing but traditional supervised learn-

ing. It consists of one instance associated with one label, as shown in Figure 1.1(a).

It can be described as

fSLL : X −→ L

It assumes that every document represents only one semantic concept. For ex, a news

story may represent either sports or education category.

2. Multi-instance learning (MIL or MISL)

It is termed as multi-instance single-label learning (MISL). It associates many in-

stances with a single label, as shown in Figure 1.1(b). It can be described as

fMIL : 2X −→ L

3. Multi-label learning (MLL or SIML)

It is termed as single-instance multi-label learning. It consists of one instance associ-

ated with a set of labels, as shown in Figure 1.1(c). It can be described as

fMLL : X −→ 2L
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It is a fact that some documents in the real world may represent more than one

semantic concepts. For ex, a news story may represent both sports as well as education

categories.

4. Multi-instance multi-label learning (MIML)

MIML consists of many instances associated with a set of labels, as shown in Figure

1.1(d). It can be described as

fMIML : 2X −→ 2L

1.2.3 Level-based Taxonomy

All the discussion held up to now considers all the labels at the same level. But

there are some scenarios in the real world that are better described using hierarchies, termed

as Hierarchical Multi-label Classification (HMC) [9] [38]. In HMC, all the labels in the label

set are organized as a hierarchy. There exist a parent-child relationship between labels. Let

an example is associated with label A. Then it is associated with all labels that appear as a

parent of label A in the hierarchy. Gjorgji Madjarov et al. [77] apply clustering to the flat

structure of all labels in the label set. Then this information is used by the HMC method.

1.3 Approaches for Multi-label classification

This research deals with the multi-label classification that involves three ap-

proaches [2] [4]:

� Transformation

� Algorithm adaptation

� Hybrid approach

The first approach, termed as transformation, alters multi-label data so that tra-

ditional classifiers can operate on such data having features and only one label at a time.

But during this process of alteration of data, some information is often lost like dependency

and correlation of labels. The second approach, termed as adaptation, modifies traditional
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algorithms of classifiers to tackle the multi-label data. Binary relevance (BR), label power-

set (LP), classifier chains (CC) are a few methods that follow the first approach. MLkNN,

ML-DT, MLNB, BPMLL, BRkNN are some methods following the second approach. A

hybrid approach can be considered as a third one. It is a combination of multiple methods.

RAkEL is a method that follows this approach.

This research deals with an algorithm adaptation approach.

1.4 Related concepts

There are many concepts related to MLC, like label correlation, label ranking.

There exist different learning frameworks. Sometimes labels need to be arranged in a

hierarchy, and that leads to hierarchical multi-label classification [95]. In this section, these

concepts are described in brief.

1.4.1 Label correlation

Examples in multi-label (ML) datasets are associated with a set of labels. These

label sets appear in the dataset in different combinations. If there are A, B, C and D labels

in the dataset, then labels A and B appear together less number of times as compared to

labels A and C. It is possible that labels A and D never occur together. This co-occurrence

of labels may affect the performance of ML classifier. As seen in the text categorization

paragraph discussed earlier, two space-related news are mentioned. Both are related to

space and environment. Thus the possibility of space and environment categories appearing

together is more than that of space and sports. When the size of the label set increases,

the time complexity required to perform MLC is also affected.

1.4.2 Label ranking

Some MLC methods predict a set of relevant labels after classification. Some

MLC methods may predict the relevance of each label with that instance in the form of

probability. It may further be used to rank labels according to their significance with that

instance. These probabilities, when split using a threshold, perform classification and when

ordered, present ranking.
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1.5 Multi-label classification: The current state of the art

Various approaches, like transformation and adaptation are used by many re-

searchers to perform multi-label classification. The k nearest neighbors (kNN) is a very

popular single-label classifier which follows a lazy approach. Many researchers have used

statistics obtained from the k nearest neighbors of multi-label instances for classification.

But as per the survey done so far, it is observed that all the approaches use the feature

similarity to find the k nearest neighbors. But for the multi-label instances, the label dis-

similarity also plays an important role, and hence it should also be considered. Proposed

work is an attempt to study the effect of label dissimilarity while performing MLC.

1.6 Research Statement and Objectives

For the proposed research work, research statement and objectives are as follows.

1.6.1 Research Statement of the Proposed Research

To design and develop a novel algorithm for multi-label classification.

1.6.2 Objectives of the Proposed Research

The goal of the proposed research work is to develop an algorithm for preprocessing

and/or multi-label classifier. Objectives of proposed research work are:

1. To study and analyze various aspects of multi-label learning.

2. To review various techniques proposed and implemented by various researchers and

to identify the potential research gaps.

3. To design and develop a novel algorithm for multi-label classification.

4. To implement and test the proposed algorithm using available standard datasets.

5. To compare and to analyze the performance of proposed algorithm with the existing

algorithms, and to validate the results.
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1.6.3 Hypothesis

The hypothesis for the proposed research work is as follows:

� Selection of k nearest neighbors affects the performance of multi-label classifier using

algorithm adaptation approach.

1.7 Contribution

Based on the survey carried out and state-of-the-art available in the area of MLC,

this work proposes two algorithms, namely MLFLD and MLFLD-MAXP.

The proposed algorithm, namely Multi-Label Classification using Feature Simi-

larities and Label Dissimilarities (MLFLD), takes into account features as well as labels to

find neighbors. It assigns weights to the neighbors. When the features of two instances are

similar, then the weight of that neighbor increases. But when the labels of two instances

are dissimilar, then the weight of that neighbor decreases.

Proposed algorithm MLFLD with MAXimum Probability (MLFLD-MAXP) is an

extension of MLFLD that behaves similar to MLFLD. However, it handles those instances

where MLFLD does not assign any label for an instance under consideration.

As per our knowledge, no other work has used dissimilarity of labels so far to

weigh neighbors to perform MLC using an adaptation approach.

kNN based classification makes use of distance metric. This work evaluates the

effect of using three distance metrics to measure feature similarity is observed for both the

proposed algorithms with three different distance measures to compute label dissimilarity.

New label dissimilarity measure SimIC is also introduced in this work.

Experiments to study the effect of the feature and/or instance selection on multi-

label data is also carried out. As per the literature survey carried out, no other work has

performed instance selection for multi-label data.

One copyright was obtained, and four papers were published based on this work.

One paper is accepted, and publication is in process. Details are given in Publication

chapter at the end of thesis.
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1.8 Assumptions

Multi-label classification (MLC) is a task of assigning a set of predefined labels

to an unseen object according to its characteristics. This work aims to design a novel

algorithm for MLC. It follows the assumptions mentioned below.

� Multi-label (ML) data is available in the form of instances. Each instance has several

features and a set of labels, called class labels.

� Each instance consists of a set of features that are associated with a set of predefined

labels.

� The number of training examples may be smaller or larger.

� The number of labels is comparatively much smaller than the number of attributes in

some datasets. Whereas in some datasets, the number of labels is equal to or larger

than the number of features.

� Datasets consist of only numeric features.

� Class labels in all the datasets are binary.

� Class labels are at the same level in the hierarchy.

These assumptions are followed by a multi-label classifier that uses knowledge obtained

from labelled data to predict labels for unlabeled data.

1.9 Thesis Organization

The thesis organization is shown in Figure 1.2. Chapter 2 gives the introduction of

Multi-Label Classification (MLC) along with the necessary notations used throughout the

thesis. It also describes performance metrics used for the evaluation of multi-label learning

along with datasets and tools used for the same. Chapter 3 describes some related work done

by various researchers to perform MLC. Description of the proposed algorithms MLFLD

and MLFLD-MAXP is given in chapter 4. Chapter 5 contains details of the experimental

setup and datasets used. Aspects of the experimentation performed using the proposed
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Figure 1.2: Structure of Thesis

algorithms along with a comparison of the performance is covered in chapter 6. Chapter 7

gives the concluding remarks about the work and recognizes some future directions in the

related area.
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Chapter 2

Multi-label Classification

Rapid growth in the area of¬ information technology has generated a lot of digital

data. Classification of this data is essential to get specific information whenever required.

Earlier, classification was used only for text categorization (TC). Later on, it is used in

various fields like annotation of images, audio and video, biology and advertising [3]-[6].

2.1 Introduction

Multi-label Classification (MLC) is an act of allotting a set of predefined labels to

an unseen entity by observing its characteristics. For example,

� A news story may represent both sports as well as education categories.

� A patient’s data may represent the possibility of one or more diseases.

� An image may be annotated by sunset, sky and sea.

� A drug compound may be useful for the treatment of multiple diseases.

Classification is the most popular supervised data analysis approach, and machine

learning is widely used for it from many decades [36]. MLC also follows a supervised learning

approach [21]. It has been used in various applications, as listed in Table 2.1. Some of them

are text categorization, image classification, graph classification, bioinformatics, functional

genomics, emotion recognition, scene classification, semantic indexing of articles, mining

13
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Table 2.1: Reported applications of multi-label learning

Application Reported in

Text Categorization (TC) [3], [2], [7], [13], [16], [44]
Image Classification [4], [9], [16]
Graph Classification [5]
Bioinformatics [6], [16], [67]
Functional Genomics [7]
Emotion Recognition [8], [16]
Scene Classification [9], [72]
Semantic Indexing of Biomedical Articles [3]
Understand Students Learning Experiences [10]
Parallel Tasks [11]
Multimedia Annotation [14], [16]

social media, parallel tasks, multimedia annotation and many more [3]-[13]. In last two

decades, several research papers, books and PhD theses have been published about MLC

[3]-[79], and various survey papers [15]-[21] are also available for the same.

Section 2.2 shows the taxonomy of classification and comparison of conventional

and multi-label classification. Taxonomy of MLC, its basic approaches and methods that

follow these approaches is described in sections 2.3 and 2.4. Section 2.5 shows another tax-

onomy of MLC according to dependency. Sections 2.6-2.8 talk about performance metrics,

datasets and tools respectively.

2.2 Taxonomy of Classification

Classification is a process of assigning a class to an unseen object based on its

features. It is a supervised learning approach. In general, classification task can be cate-

gorized according to a total number of labels in label space and number of labels that can

be associated with an instance. Accordingly, the taxonomy of classification is given below:

� Single label classification

– Every input instance is associated with only one output label.

� Binary classification

– Label space consists of only two labels.

– Ex. a news story may represent either sports or education category.

Chapter 2 | Multi-label Classification
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� Multiclass classification

– Label space consists of more than two labels.

– Ex. a news story may represent one of sports, politics or education categories.

� Multi-label classification

– An input instance is associated with a set of labels.

– Ex. a news story may represent both sports as well as education categories.

Assigning a single category to each input example is termed as single label (SL)

classification or just classification. According to the total count of categories involved, SL

classification can be either BSL or MSL. BSL (binary single-label) classification when the

label space has only two categories. MSL (multiclass single label) classification if the label

space includes more than two categories. Suppose students are asked about the topics of

their interest among Cloud Computing (A), Big Data (B) and IoT (C). Then students’ may

reply as follows: some students like only A, some like only B, and some like only C. There

are some students who like A and B, or B and C, or A and C, or all the three subjects.

This scenario represents multi-label data and is handled by multi-label classification (MLC)

[5]. Different algorithms are available to handle SL problems. But various applications

need MLC such as TC, the discovery of the drug, tag recommendation, prediction of gene

function [3]-[11] etc. Hence it is gaining the position of an upcoming research field in the

area of machine learning.

As this thesis focuses on multi-label classification, its comparison with traditional

classification is presented here in Table 2.2 [21] [77].

2.3 Taxonomy of Multi-Label Classification (MLC)

MLC is classified by researchers differently. In 2007, Grigorios T. and Ioannis K.

[15] categorized existing MLC techniques into transformation and adaptation, as shown

in Table 2.3(a). Their hierarchy is shown in Figure 2.1 [15]-[21]. As the name indicates,

transformation involves the conversion of data from multiple labels to a single label (SL)

followed by single-label classification (SLC). The adaptation category involves modification

of basic single-label algorithm to process multiple label data directly. In 2009, Grigorios
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Table 2.2: Single-label versus Multi-label Classification

Sr. No. Single-label Classification (SLC) Multi-label Classification (MLC)

1
One instance is associated with
one label.

One instance is associated with
a set of labels.

2
Also called as Single-instance
single-label learning (SISL).

Also called as Single-instance
multi-label learning (SIML).

3 fSLC : X → L fMLC : X → 2L

4
Every object represents only one
semantic concept.

An object represents one or more
semantic concepts.

5
Ex. a news story represents either
sports or education category.

Ex. a news story represents both
sports as well as education categories.

6

Figure 2.1: Taxonomy of multi-label classification approaches

T. et al. [16] further categorized transformation depending on several labels considered at

a time. These methods use a single label, a pair of labels, or multiple labels at a time.

These three methods are termed as first, second and high-order strategy, respectively by

M. L. Zhang et al. [20]. Some researchers followed one more approach, namely ensemble

methods. These methods combine several MLC methods in different ways [16][19].

In 2009, Andre et al. [17] categorized MLC methods based on the dependency of

the algorithm. They formed two categories, namely an algorithm independent method and

an algorithm dependent method, as shown in Figure 2.2 [15]-[21]. The reported literature,

according to this taxonomy shown in Figure 2.2 is listed in Table 2.4.
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Figure 2.2: Taxonomy of multi-label classification methods according to dependency

Table 2.3: Classification of reported algorithms based on the approach

MLC approach Reported in

Transformation [6], [8], [10], [11], [15]-[23], [29], [30], [32]-[35], [37], [44]-[43]
[49], [56], [60], [61], [63], [64], [71], [80]

Adaptation [3], [7], [15]-[23], [12], [26], [29], [32]-[35], [37], [42]-[43]
[56], [60], [63], [64], [71]

Ensemble [3], [16], [19], [20], [29], [31], [35], [64]

Table 2.4: Classification of reported methods based on dependency

Multi-label classification approach Reported in

Algorithm independent methods [6], [15]-[17], [20], [68]
Algorithm dependent methods [6], [15]-[17], [20], [68]

Figure 2.3: Taxonomy of Multi-label tasks

2.3.1 Taxonomy of Multi-label tasks according to output

MLC can be categorized according to tasks performed during learning, as shown in

Figure 2.3. These tasks are, namely, classification and ranking [18] [19]. In the classification,

labels are divided into two groups, namely relevant and irrelevant. In contrast, in the

ranking, a sequence of all the labels is generated in the order of their relevance. One more

task can be considered that combines the functionality of both ranking and classification

[20]. It partitions as well as ranks the labels. According to the learning task, a suitable

metric can be used for evaluation, as discussed in section 2.5. These tasks are elaborated

in brief as follows.
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Let L = {L1, L2, L3, L4, L5} be a set of disjoint class labels.

1. Classification

� It partitions the label set L into two sets: a set of relevant (positive) labels and

a set of irrelevant (negative) labels.

� It outputs a set of positive labels P. Then negative labels can be obtained by set

difference L–P .

� For ex, positive labels L = {L3, L4, L5} and negative labels L = {L1, L2}.

2. Ranking

� It produces an order of all the labels in L.

� It is expected that the ranking of positive labels should be higher than that of

negative labels.

� For ex, rank(L5) > rank(L3) > rank(L4) > rank(L2) > rank(L1)

3. Combination of classification and ranking

� It outputs the ranking of positive labels.

� For ex, rank(L5) > rank(L3) > rank(L4)

Gjorgji Madjarov et al. [19] have evaluated twelve ML algorithms using eleven

ML datasets and observed performance of sixteen metrics. The efficiency of algorithms is

also analyzed. Authors checked statistical significance with Nemenyi and Friedman tests.

2.4 The state-of-the-art Multi-label (ML) methods

According to taxonomy given in Figure 2.1, and Figure 2.2, the state-of-the-art

ML methods are discussed in brief in this section.

2.4.1 Transformation

As the name indicates, transformation involves transferring the data to change

its multi-labelled nature to single-label so that it can be dealt with SLC. These methods
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can be classified further according to the number of labels considered by a classifier. These

methods use a single label, a pair of labels, or multiple labels at a time. Accordingly, they

are termed as first, second and high-order strategy respectively by M. L. Zhang et al. [7]

[16] [20] [21] [12] [28] [53] [57].

In this section, some of the methods used for transformation approach are ex-

plained in brief.

2.4.1.1 Single-label approaches

Methods which follow a single-label approach for transformation consider only one

label at a time. BR and Ignore/Select are the methods which support this approach.

Ignore/Select: These methods either remove an instance with multiple labels

or select one label and associate it with that instance, respectively. These methods are

referred to as ranking via single-label learning in the literature [16]. They are explained

with an example as follows.

� Ignore

– As the name indicates, it merely ignores all multi-label examples.

– For ex., instance 2 with two labels is removed from the dataset (Figure 2.4).

– Cons: Lot of information is lost.

Figure 2.4: Example of Ranking via Single-Label Learning (Ignore)

� Select

– For instance, having two or more labels, it selects and associates only one label

to that instance and rejects the remaining labels.
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– Criteria for selection of label can be a minimum occurrence of a label (Min),

the maximum occurrence of a label (Max) and random occurrence of a label

(Random) in the whole dataset.

– For ex., in Min Select, instance two is associated with L3 as it occurs twice,

and L4 occurs thrice. Similarly, in Max Select, instance two is associated with

L4, which occurs maximum times, and in random select L4 is selected randomly

(Figure 2.5).

– Cons: Information loss

Figure 2.5: Example of Ranking via Single-Label Learning (Select)

Copy and Copy-Weight (Entropy):

� Both ignore and select methods face a problem of information loss.

� Hence copy method is used to replace each example (xi, yi) with |yi| examples.

� For ex., instance two is associated with two labels. It is replicated twice, once with

L3 and other with L4.

� In copy-weight, 1/|yi| weight is also assigned to all replicated instances.

� For ex., all replicas of instance two are assigned weight 0.5 (Figure 2.6).

� Pros: No information loss
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Figure 2.6: Example of Ranking via Single-Label Learning (Copy-weight)

� Drawback: Increased number of examples/instances

Binary Relevance (BR): Consider there are three labels Cx, CyandCz, respec-

tively. Then BR designs three separate classifiers where each classifier handles these three

labels independently (Figure 2.7).

Figure 2.7: Example of Binary relevance

As many traditional methods are available to handle individual label, anyone

method can be picked. Finally, for the classification of new data, the results of all the three

classifiers for three labels are considered. The cons of the technique is that relation among

different labels is simply ignored [19]-[23]. But it has many useful features also. As it treats

each label independently, the classifier model can be easily updated dynamically if the label

set is appended with a new label and scales linearly with the number of labels. Also, it is

beneficial to handle active data. The classifier model can run in multiple parallel classifiers

for different labels. Due to so many features and ease of design, BR is very popular and

widely used.
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Figure 2.8: Example of RPC

2.4.1.2 Pair of labels

RPC and CLR are the ML classifiers that consider a pair of labels together instead

of a label. These two methods follow a transformation approach.

Ranking by Pairwise Comparison (RPC): As the name suggests, RPC con-

siders a pair of labels at a time. If there are m classes in the data, then (m×(m−1))/2 pairs

of classes can be formed. A separate classifier for each pair is constructed in RPC [16][78].

Each Cp−q classifier considers instances having either class Cp or Cq. All the instances hav-

ing neither Cp nor Cq classes are ignored. The instance associated with Cp or Cq is marked

as 1 or 0, respectively. Then classes are ranked as per votes received from all Cpq pair mod-

els [18] [22]. For ex., Figure 2.8 shows actual data having four multi-label instances related

to four labels L1. . . 4. For four labels, six combinations viz. L1−2, L1−3, L1−4, L2−3, L2−4

and L3−4 exist as shown in Figure 2.8. Suppose new instance is classified by these six

models and they give votes shown in Table 2.5. Counts of these votes are used to rank

labels, as shown in Table 2.6. For ex., L2 having maximum votes is listed first, indicating

most relevant label for instance, under consideration.
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Table 2.5: Votes of RPC models for a new instance

Model L1−2 L1−3 L1−4 L2−3 L2−4 L3−4
Votes L2 L1 L1 L2 L2 L4

Table 2.6: Total votes and rank of labels by RPC

Labels L1 L2 L3 L4

Total votes 2 3 0 1

Rank of labels Rank 2 Rank 1 Rank 4 Rank 3

Calibrated Label Ranking (CLR): From Table 2.6, it can be observed that

RPC generates the ranking of all labels.

Figure 2.9: Example of CLR

Relevant and irrelevant labels are not distinguished separately. This drawback is

overcome in the CLR method. It adds a virtual (imaginary) label [78] to the existing label

set of size m in the original data. Rest of the operations are same as RPC (Figure 2.9). As a

result, the ranking of (m+1) labels is obtained where an imaginary label separates relevant

labels from irrelevant labels [18]-[22]. Table 2.7 shows votes received from ((m+ 1)×m)/2

models for unseen instance. Table 2.8 shows relevant labels L2, L1 having rank higher than

that of virtual label Lv and irrelevant labels L4, L3 having rank lower than that of Lv.
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Table 2.7: Votes of CLR models for a new instance

Model L1−2 L1−3 L1−4 L2−3 L2−4 L3−4 L1−V L2−V L3−V L4−V
Votes L2 L1 L1 L2 L2 L4 L1 L2 LV LV

Table 2.8: Total votes and rank of labels by CLR

Labels L1 L2 L3 L4 Lv
Total votes 3 4 0 1 2

Rank of labels Rank 2 Rank 1 Rank 5 Rank 4 Rank 3

2.4.1.3 Multiple labels

A multi-label instance is associated with a set of labels in most of the cases. If all

the labels or its subset is used to build a classification model, then the relationship between

labels is utilized, and better performance can be achieved. LP, RAkEL, CC and ECC are

based on this concept. RAkEL, CC and ECC use a subset of labels whereas LP uses a set

of all the labels of each instance.

Label Powerset (LP): As mentioned in section 2.4.1, creating a new label is

also one method to handle instances associated with more than one label. LP [18] [19] [21]-

[23] uses same approach. Every distinct combination of labels associated with instances is

treated as a new class. Now, this data represents multiclass data which can be handled

by conventional classifiers. Thus relationship among labels is considered by processing

multiple labels simultaneously, and this handles the disadvantage of BR. Sometimes many

combinations of labels are present in the original data. It generates many classes. The

problem occurs when few classes are associated with comparatively less number of instances.

Accuracy is hampered when some classes possess very few instances among others. For the

unseen data, the model predicts the most probable set of labels. Again the issue with

this method is that it can predict only label sets existing in the original data. Multi-label

data in Figure 2.10 is related to four labels. Hence each instance in transformed data is

related with a set of four labels {L1, L2, L3, L4} where each Liε{0, 1}. For ex, instance one

is associated with L1 and L4 represented by 1 and L2 and L3 represented by 0, thus forming

label set 1001.

PPT (Pruned Problem Transformation): As seen in LP, some label sets may

possess very few instances among others. It hampers accuracy. Such a problem is overcome

in PPT [18] [29]. All those instances are removed that have label sets occurring in the

dataset number of times less than a threshold. Such instances are replaced by instances
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Figure 2.10: Example of Label Powerset (LP)

having disjoint subsets of that label set. Again it is checked whether newly added instances

with disjoint label sets occur several times higher than a threshold, then they are considered

otherwise discarded.

Figure 2.11: Example of PPT

For ex, let us consider threshold t1 is 3. As shown in Figure 2.11, a label set

{L1, L3, L4} occurs less than t1 times. Hence all such instances are replaced by instances

having subsets {L1} and {L3, L4} respectively. As occurrence count of {L1} is still less than

t1, all such instances are discarded. Occurrence count of {L3, L4} is more than t1. Hence

all such instances are considered. Problem with the pruning is that crucial information of

infrequent label may be lost after pruning.

Random k-Label sets (RAkEL): Instead of considering all the labels of an

instance together as in LP, it is possible to consider only a subset of labels at a time. This

group of labels is termed as a label set by Tsoumakas G. and Vlahavas I. P. [22]. It helps

to reduce the complexity of LP also. The method uses a parameter k that restricts count

of labels to be used by one model. It also uses parameter m denoting the number of models

to be constructed. As parameters k and m affect the performance, it is crucial to decide

their values. Parameter k can take values between one and size of label space. Smaller k

is observed to give better performance, whereas parameter m should not be minimal. It

can take a value at least twice the number of labels as suggested in the literature [18] [20]
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Table 2.9: Example of Random k-Label sets: Decisions for a new instance

Model 3-label sets L1 L2 L3 L4 L5 L6

H1 {L1, L2, L6} 1 0 - - - 1
H2 {L2, L3, L4} - 1 1 0 - -
H3 {L3, L5, L6} - - 0 - 0 1
H4 {L2, L4, L5} - 0 - 0 0 -
H5 {L1, L4, L5} 1 - - 0 1 -
H6 {L1, L2, L3} 1 0 1 - - -
H7 {L1, L4, L6} 0 - - 1 - 0

Average votes - 3/4 1/4 2/3 1/4 1/3 2/3

Final prediction - 1 0 1 0 0 1

[21] [22]. Label sets used by m models also affects performance. For an unseen instance,

each label is predicted by averaging results obtained from m models. It should be noted

that a non-existing label set may be predicted for unseen data. G. Tsoumakas et al. [22]

have implemented two variants of RAkEL, one with disjoint label sets and the other with

overlapping labels.

Table 2.9 shows a snapshot of predictions for a new instance by seven models

using three label sets. Consider model H1. As it uses label set {L1, L2, L6}, it will vote for

L1, L2, L6 labels only. For new instance, final prediction for label L1 is 1 as an average of

votes is 3/4 that is above 50 percent.

Classifier Chain (CC): As discussed earlier, BR designs three independent clas-

sifiers for three labels Lx, Ly and Lz. This separate consideration of labels simplifies the

task at the cost of losing label relationships. Read J et al. [22] proposed CC that handles

this issue by considering three labels independently but in a particular sequence (Figure

2.12). For ex, sequence considered is Lz, Ly and Lx. So first Lz is predicted by consider-

ing all features. Next Ly is predicted considering all features and predicted Lz. Then Lx

is predicted considering all features and predicted Ly. Thus relationship between labels is

taken into account by each classifier. The chain of labels can be permuted in multiple ways,

and that is a very crucial part in CC as it directly affects its accuracy. It also dictates the

inability of parallelizing the process [20] [21] [23]. Read J. et al. has introduced perfor-

mance measure log loss in [23] that uses certainty of prediction. Jesse Read et al. [39] also

proposed probabilistic classifier chains (PCC). It uses Näıve Bayes to yield probabilistic

output.
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Figure 2.12: Example of CC

Ensemble of Classifier Chain (ECC): Performance of CC is very much de-

pendent on the chain of labels used. There can be many permutations of labels. Finding

the best chain is quite tricky. Jesse Read et al. [23] handled this issue resulting in an

ensemble of multiple CC models, each one using a different chain of labels. It yields better

accuracy than CC. Another advantage of ECC is that it never predicts an empty label set

due to various chains.

2.4.2 Adaptation

Adaptation involves an amendment of the existing single-label algorithm to handle

multiple labels directly. Many researchers have amended current methods to manage multi-

label data, and still, research is going on in this field. M. L. Zhang et al. [20] described the

task as “fit an algorithm to the data”. These methods have amended conventional classifiers

like decision tree (DT), support vector machine (SVM), Näıve Bayes (NB), neural network

(NN) and k nearest neighbours (kNN) to use multiple label data directly without conversion

[15]-[21].

This section describes some methods used for algorithm adaptation in brief.

Multi-Label k Nearest Neighbors (ML-kNN): M. L. Zhang et al. [12] pro-

posed this algorithm that is designed by adapting conventional kNN. For ex., let k neighbors

for instance X are computed. Then neighbors of an instance X belonging to each label Cm

of X is counted. Also, neighbors of an instance X belonging to each label Cm not belong-

ing to X are counted. Next likelihood probability is computed using these counts. Prior

probabilities are also obtained from the training set by counting instances having label Cm

and not having label Cm respectively. Next labels of a new instance are obtained using
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Maximum a posteriori that is based on Bayes theorem [13] [10]. The posterior probability

for each label Cm is then computed for an unseen instance. Experimentation is performed

on three datasets. MLkNN [18]-[22] [12] has proven to be the state-of-the-art algorithm,

although it has one limitation of not considering a label relationship.

Backpropagation Multi-label neural network (BP-MLL): M. L. Zhang et

al. [7] proposed an algorithm that is derived from a conventional neural network. This al-

gorithm is modified to deal with multiple labels. It uses backpropagation. It aims to design

an error function that generates the rank of relevant labels higher than that of irrelevant

labels for each multi-label instance Xm. Each instance Xm contributes to computing the

error. It determines the output of the neural network for each relevant label of Xm and

that for an irrelevant label of Xm. Difference between these two values is used further.

Thus multi-label data is used to compute errors, and the information is fed back such that

errors are minimized. Performance is evaluated using Yeast dataset. Ensemble of BP-MLL

is suggested by authors for performance improvement [18] [19] [22] 78.

ML-C4.5: A. Clare and R. King [26] developed a new multi-label algorithm based

on the C4.5 algorithm for decision tree [27]. The reason was, they found that the phenotype

data of yeast is multi-label. Some genes may belong to multiple functional classes. Hence

multi-label rather than multiclass classification fits here properly. For this purpose, the

authors introduced ML-IG technique. The technique calculates entropy for each class. The

probabilities of a class are calculated from the information of instances belonging and not

belonging to each class. This information decides the attribute to be used for partitioning

the dataset at each node. Most important thing to note is that a set of labels rather than

a single label is assigned to the leaf node of the tree. The resulting tree is also useful to

generate rules for classes which are easy to understand [17] [19] [20] [22] [26] [27]. As the

yeast dataset is small, authors have used the bootstrap method [79] for sampling so that

more samples of data can be created and consequently, more rule sets can be generated.

MLNB: Zhang M. L. et al. [28] presented a basic version of modified Näıve Bayes

MLNB. It estimates posterior probability from prior and conditional probabilities of each

class. Authors also presented two extensions of MLNB, one using principal component anal-

ysis (PCA) and the other using genetic algorithm (GA). Both extensions perform feature

selection before MLNB. Finally, PCA followed by GA is also used for selecting features. In

GA, fitness is assessed by averaging hamming and ranking loss. Ten-fold cross-validation
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is used for experimentation on twelve synthetic datasets and two real-world datasets. One

drawback of the algorithm is that while estimating probability, the relationship between

labels is not used.

Rank-SVM: It is an adaptation of a maximum margin strategy [17] [19] [20]. It

is designed using a set of C linear classifiers for C labels which are optimized to minimize

empirical ranking loss. It uses the following convention: W = {(wm, bm)|1 ≤ m ≤ C}

where wm is weight vector and bm is the bias for mth label. For instance xm, margin is

calculated using relevant and irrelevant labels of instance xm.

2.4.3 Ensemble

Sometimes applying a classifier once to the data may not perform up to the mark.

But if the same classifier is applied to the same data but with parameter variation, then

it has been observed to get improved performance when results of each run are combined.

This technique has been proven to perform much better and to provide improved accuracy

also. RAkEL [19] [22] [71] and ECC [19] [23] follow this methodology. RAkEL and ECC

are ensembles of LP and CC respectively. They are described earlier in brief. Yannis

Papanikolaou et al. [3] further categorized the ensemble approach as homogeneous or

heterogeneous. RAkEL and ECC [19] [30] are termed as homogeneous because they are

ensembles of the same base classifiers viz. LP, CC and PPT, respectively. MULE [3] is

termed as heterogeneous because it is an ensemble of different base classifiers.

2.5 Multi-label classification according to dependency

MLC methods can also be classified according to dependency, as shown in Figure

2.2. This section describes these classifiers, which are grouped as algorithm independent

and algorithm dependent.

2.5.1 Algorithm independent methods

The name itself describes the nature of algorithms that follow this approach.

They use traditional classifiers as a base. But traditional classifiers are single-label. So the

simplest way is converting data from multi-label to single-label [15]-[18] [22]. That is these
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methods change data, not an algorithm. These methods are described very nicely by Zhang

M. L. and Zhou Z.H. [20] as methods that “fit data to an algorithm”. These methods can

be grouped as label-based and instance-based. They are described as follows. Assume that

a multi-label data under consideration has C labels.

� Label-based methods: In these methods, C base classifiers K1,K2 . . .KC are used.

Each Km classifier is single-label. It considers all instances having label m as relevant

and remaining instances as irrelevant. Votes for new instance are obtained from

K1,K2 . . .KC classifiers.

� Instance-based methods: These methods again can be categorized as per varia-

tions to consider instances and assign label(s) to instances.

– Ignore: The simplest method to handle ML data by SL classifier is to ignore

instances that have more than one label and consider only those instances that

have one label only. The previous method faces the problem of data loss as it

does not use ML instances.

– Creation of new label: This method considers all the instances. But because

base classifier is still single-label, this method represents each unique combina-

tion of labels as a new label. Thus all instances are preserved, and no data is

lost.

– Conversion: Name implies converting data from ML to SL. It can be done

using split, select or replicate the approach.

In a split approach, data is split into DC samples. Let there be only two classes

Km and Kn. Then two splits D1 and D2 will be created. The instance I having both classes

Km and Kn will be added in split D1 as (I,Km) and D2 as (I,Kn). But instance I having

either Km or Kn will be added in either D1 or D2 only with respective class.

In selection approach of conversion, class to be associated with an instance is

selected. Let there be an instance I that is associated with classes Km and Kn.

� Random approach assigns class Km or Kn on a random basis to an instance I.

� Min approach assigns class Km to an instance I if it appears minimum time com-

pared to Kn in the data.
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� Max approach assigns class Km to an instance I if it appears maximum time com-

pared to Kn in the data.

In the replicate approach of conversion, an instance I associated with say two

labels Km and Kn is replaced by two replicas of that instance as (I, Km) and (I, Kn).

There is more data loss in ignore approach. Comparatively less data loss is in case

of select method. No data loss is there in replicate and split approaches, but there is an

increase in instances.

2.5.2 Algorithm dependent methods

During the conversion from ML to SL, the relationship between labels is lost.

Hence some researchers used multi-label data as it is but designed algorithms to handle it.

These methods are described very nicely by Zhang M. L. and Zhou Z.H. [20] as methods that

“fit an algorithm to data”. Traditional algorithms like support vector machine, decision

tree, neural network, Näıve Bayes and k nearest neighbors are modified by many researchers

to tackle ML data directly [15]-[22] [26]-[8]. Some methods are described in section 3.3.

2.6 Assessment of MLC algorithms

Measures used for evaluating the performance of ML algorithms are different than

SL algorithms. They can be assessed based on either calculation or output of learner [16] [19]

[20] [22] [71]. ML performance measures can be categorized, as shown in Figure 2.13. Those

metrics that assess performance by averaging actual and predicted values of all examples

under consideration are termed as example-based metrics. And those metrics that are

assessed by averaging performance of all labels, which is calculated from the performance

of each individual label are termed as label-based metrics [19] [20] [22].

ML learning algorithm can generate output in three different ways:

� Prediction of binary values one for each label in the label set indicating whether a

particular instance is associated with that label

� Ranking of all labels as per their relevance to a particular instance
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� Predicting the probability value for each label in the label space

Figure 2.13: Taxonomy of performance metrics

2.6.1 Notations

Before proceeding, let us define basic terms to be used for ML tasks.

� Let us denote an ML dataset under consideration by E and label space by S.

� Let (xm, ALm) denote mth instance of dataset E, where xm is a record having f

features, m = 1 . . . |E| and ALm is a subset of S.

� Let gc be a task of ML classification. Then the objective of gc(xm) is to find PLm

that is a prediction of labels for an instance xm.

� Let gr be a task of ML ranking. Then the objective of gr(xm) is to find a ranking of

labels for an instance xm.

As stated above, ALi and PLi denote a set of actual labels of instance xi and a set

of predicted labels by gc(.) for the same. ML classifiers are assessed using various metrics

that are listed below.

2.6.2 Example-based measures

Performance measures that compute data from individual instances and then make

an average of data obtained are termed as example-based measures. They can be grouped

as binary and ranking.
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� Binary measures

Example-based measures that predict whether an instance is associated with a par-

ticular label or not are termed as binary measures. They are described here.

Hamming loss: It counts the number of times actual labels of an instance do not

match predicted labels [25].

HL(gc) =
1

|E|

|E|∑
i=1

|V (PLiΘALi|)
|S|

(2.1)

where Θ denotes symmetric difference. V (.) = 0 if all predicted labels PLi are

the same as ALi for an instance i, else it is 1. HL(gc) = 0 means all instances

are correctly classified. Smaller HL(gc) indicates better performance.

Subset Accuracy: It finds average from the exact match of the instance-wise actual

label set and corresponding predicted label set for all the instances [14-20].

SA(gc) =
1

|E|

|E|∑
i=1

V (PLi = ALi) (2.2)

where V (.) = 1 if ALi and PLi of instance I match, else V (.) = 0.

Recall, Precision, F-Measure and accuracy [31]:

Rc(gc) =
1

|E|

|E|∑
i=1

|PLi
⋂
ALi|

|ALi|
(2.3)

Pr(gc) =
1

|E|

|E|∑
i=1

|PLi
⋂
ALi|

|PLi|
(2.4)

F1(gc) =
1

|E|

|E|∑
i=1

2× |PLi
⋂
ALi|

|ALi|+ |PLi|
(2.5)

Acc(gc) =
1

|E|

|E|∑
i=1

|PLi
⋂
ALi|

|PLi
⋃
ALi|

(2.6)

� Ranking measures

All the ranking measures are also example-based [19]. They are defined in terms of

ranking function, say, µ(.). Let µ(l, i) denotes relevance of label l with an instance i.

Assume that smaller µ(l, i) shows the higher significance of l for i.
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Ranking loss: computes whether a relevant label is ranked below a particular irrel-

evant label [25].

RL(gr) =
1

|E|

|E|∑
i=1

1

|ALi|.|ALi|
{(yr, yir)|µ(yr, xi) ≥ µ(yir, xi)}| (2.7)

Here ALi denotes complement of a set of relevant labels of an instance i. El-

ements yr and yir are members of sets ALi and ALi respectively. RL(gr) = 0

indicates all relevant labels are ranked above irrelevant labels for all instances.

Smaller RL(gr) is desired for better performance.

Coverage: It observes the list of predicted labels to find a number of steps for in-

clusion of all relevant labels of each instance and computes average over all the

instances. The assumption is that the most relevant label appears at the start

of the list. Smaller CG(gr) indicates excellent performance.

CG(gr) =
1

|E|

|E|∑
i=1

maxyr∈ALiµ(yr, xi)− 1 (2.8)

Average precision: determines an average value from all relevant labels ranked

higher than a particular relevant label. More AP (gr) indicates better perfor-

mance.

AP (gr) =
1

|E|

|E|∑
i=1

1

|ALi|
∑

yr1∈ALi

|{yr2 ∈ ALi|µ(yr2, xi) ≤ µ(yr1, xi)}|
µ(yr1, xi)

(2.9)

Both yr1 and yr2 labels are relevant.

One-error: determines the number of times an irrelevant label is predicted with the

top rank (measures how many times a predicted label at the top rank is not in

the list of relevant labels of an instance). An optimal value for OE(gr) is zero.

Smaller OE(gr), better the performance [15]-[21].

OE(gr) =
1

|E|

|E|∑
i=1

argminy∈Sµ(y, xi) /∈ ALi (2.10)

V (.) returns 0 in case of false condition, else it returns 1.
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2.6.3 Label-based binary measures

Measures that calculate average performance from that of individual labels are

termed as label-based measures. They are binary measures, namely macro-averaging and

micro-averaging.

� Macro-averaging and Micro-averaging: These are binary metrics based on a

count of true positives (TP), true negatives (TN), false positives (FP) and false neg-

atives (FN) [15]-[21]. Macro (Micro) averaging gives equal importance to all the

labels (instances). In other words, macro (micro) averaging finds an average across

all the labels (example/label pairs). If c is a label, then macro-averaged metric V

and micro-averaged metric V are calculated in general as

Vma =
1

|S|

|S|∑
c=1

V (TPc, FPc, TNc, FNc) (2.11)

Vmi = V (

|S|∑
c=1

TPc,

|S|∑
c=1

FPc,

|S|∑
c=1

TNc,

|S|∑
c=1

FNc) (2.12)

Definitions of macro-averaged and micro-averaged precision, recall, F1 and accuracy

are given below from Eq. 2.13 to Eq. 2.20 [1][18].

� Macro-precision:

MaPr =
1

|S|

|S|∑
c=1

TPc
TPc + FPc

(2.13)

� Micro-precision:

MiPr =

∑|S|
c=1 TPc∑|S|

c=1 TPc +
∑|S|

c=1 FPc
(2.14)

� Macro-recall:

MaRc =
1

|S|

|S|∑
c=1

TPc
TPc + FNc

(2.15)

� Micro-recall:
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MiRc =

∑|S|
c=1 TPc∑|S|

c=1 TPc +
∑|S|

c=1 FNc

(2.16)

� Macro-F1:

MaF1 =
1

|S|

|S|∑
c=1

2× TPc
2× TPc + FPc + FNc

(2.17)

� Micro-F1:

MiF1 =
2×

∑|S|
c=1 TPc

2×
∑|S|

c=1 TPc +
∑|S|

c=1 FPc +
∑|S|

c=1 FNc

(2.18)

MaAcc and MiAcc result in the same values. Macro and micro averaging do not affect

accuracy measure.

� Macro-accuracy:

MaAcc =
1

|S|

|S|∑
c=1

TPc + TNc

TPc + TNc + FPc + FNc
(2.19)

� Micro-accuracy:

MiAcc =

∑|S|
c=1 TPc +

∑|S|
c=1 TNc∑|S|

c=1 TPc +
∑|S|

c=1 TNc +
∑|S|

c=1 FPc +
∑|S|

c=1 FNc

(2.20)

2.6.4 Probability per label measures

Two measures AUROC and AUPRC provide a probability for each label. In this

section, these two metrics are described in brief.

� AUROC/AUC (Area Under Receiver Operating Characteristics): It repre-

sents the probability that a randomly chosen relevant sample will be ranked better

than a randomly chosen irrelevant sample [23] [38].

MaAUC =
1

|S|

|S|∑
c=1

AUCc =
1

|S|

|S|∑
c=1

|{(x1, x2)|µ(yc, x1) ≤ µ(yc, x2), (x1, x2) ∈ (Zc × Zc)}|
|Zc|.|Zc|

(2.21)
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where

Zc = {xi|yc ∈ ALi, 1 ≤ i ≤ |E|}

Zc = {xi|yc /∈ ALi, 1 ≤ i ≤ |E|}

Zc and Zc are sets of test instances belonging and not belonging to label c respectively.

MiAUC =
|{(x1, x2, y1, y2)|µ(y1, x1) ≤ µ(y2, x2), (x1, y1) ∈ Zi, (x2, y2) ∈ Zir}|

|Zi|.|Zir|
(2.22)

where

Zi = {(xi, y)|y ∈ ALi, 1 ≤ i ≤ |E|}

Zir = {(xi, y)|y /∈ ALi, 1 ≤ i ≤ |E|}

Zi and Zir are sets of relevant and ¡instance, label¿ pairs respectively.

An optimal value for both MaAUC and MiAUC is 1. Larger MaAUC and MiAUC

denote better performance [20].

� AUPRC (Area Under Precision-Recall Curve): A precision-recall curve is

generally termed as PR curve. It plots the precision of a model as a function of its

recall. Let the model predicts the probability that a new instance is positive with a

threshold t to obtain the predicted class. This threshold t represents one point in PR

space. For plotting a PR curve, threshold t can be varied from 1 to 0. It increases

the count of positive instances predicted, thereby increasing the recall and generally

decreasing (occasionally increasing) the precision. PR curve shows the predictive

behavior of the model. The area between the PR curve and the recall axis is termed

as “area under the PR curve (AUPRC)”. Optimal value of the AUPRC is 1.

In multi-label classification, PR curves are plotted for each class where the examples

associated with the class as relevant and the remaining examples as irrelevant. Then

the performance of all classes is combined using one of the two approaches:

– Area Under the Average PR Curve: It converts a multi-label task into binary

tasks to obtain the overall PR curve.

– Average Area Under the PR Curves: It uses the weighted average of the areas

under the class-wise PR curves.
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Table 2.10: Performance metrics used for assessment of MLC methods

Metric Reported in

Hamming loss [6]-[9], [13]-[21], [24]-[25], [28]-[30], [32], [35], [37], [39], [43],[46]
[49], [52], [53], [56], [60], [61], [64], [66]-[68], [71], [72], [80]

Ranking loss [4], [5], [7]-[9], [11], [14], [16], [18]-[21], [12], [25], [28], [39], [46]
[52], [53], [61], [72], [80]

One error [7]-[9], [13], [14], [16]-[21], [12], [25], [28], [46], [52], [53], [72], [80]
Coverage [7]-[9], [13], [14], [16]-[21], [12], [25], [28], [46], [52], [53], [61], [72]
Average precision [4], [5], [7]-[9], [11]-[14], [16]-[21], [12], [25], [28], [46], [52], [53]

[60], [72], [80]
Accuracy [6], [10], [15], [16], [18]-[21], [23], [29]-[33], [35], [37], [44]
Accuracy [49], [56], [60], [61], [67], [68], [71]
Subset accuracy [6], [11], [16], [18]-[21], [37], [56]
Precision [6], [10], [11], [15], [16], [18]-[21], [31], [32], [67], [71], [80]
Recall [6], [10], [11], [15], [16], [18]-[21], [31], [32], [67], [71], [80]
F-measure [6], [11], [16], [18]-[21], [29]-[31], [37], [42], [43], [47], [56]

[60], [64], [71], [80]
ROC [25], [38], [40], [47], [53], [71]
Macro precision, recall [19], [20]
Macro F1 [3], [2], [8], [10], [19], [20], [22], [23], [37], [56], [66]
Micro precision, recall [19], [20], [80]
Micro F1 [3], [2], [8], [10], [19], [20], [22], [24], [37], [56], [63], [66]
Macro Micro AUC [8], [20]
AUPRC [23], [38]
Hierarchical loss [18]
Log loss [23]
Exact match [66]

Performance metrics used for assessment of MLC methods by various researchers

are listed in Table 2.10. Hamming loss is used as the most common metric used by many

researchers.

2.7 Datasets

ML datasets from different domains are provided by MEKA, Mulan and LibSVM

[73]-[76]. These datasets show varying performance depending on label statistics. It can be

measured by the following parameters.

� Label Cardinality (LC): It denotes an average number of labels per instance.

� Label Density (LD): It is a ratio of LC to the total number of labels.
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� Label Diversity (LV): It represents how many sets of different label combinations

are available in the data set [16] [20].

Tsoumakas, G. and Katakis, I. [15] introduced LC and LD. Read J. [97] has

presented PUNIQ that represents a ratio of LV to the number of examples. One more

parameter called PMAX is also introduced by the author that represents the ratio of the

count of the most frequent label set to a total number of examples. Low PUNIQ indicates

regularity of labels, whereas low PMAX indicates the uniformity of labels. High PUNIQ

reveals that many label sets are occurring in the dataset; hence less number of examples

is associated with each label set. High PMAX shows that a large number of examples are

associated with the most frequent label set, resulting in label skew. Consequently, less

number of examples are associated with less frequent label sets.

Different datasets possess a different number of labels. Also, the number of labels

to be associated with varies for each instance. It imposes problem while evaluating ML

methods and comparing their performance. Above parameters are useful to perform the

same.

Datasets with their domains are shown in Table 5.1.

2.8 Tools for implementation of MLC

Different tools provide existing ML methods that can be used by researchers and

practitioners for study and to compare with their implementation. Some tools are listed

in Table 2.12 [73]-[76] [80]]. MEKA [73]] provides a GUI. It is an open-source library.

Mulan [74] provides libraries that can be imported in a Java program. Both tools are

built on WEKA [75]. LibSVM [76] is another tool that supports libraries for traditional

Support Vector Machines (SVM) which need some changes for ML support. These tools

process datasets in either Comma Separated Value (CSV) or Attribute Relation File Format

(ARFF). Scikit-multilearn is a library available in Python that is designed to support MLC

[80].

To summarize, initially different applications where ML data is used, are listed in

this chapter. Taxonomy of classification is discussed, followed by a comparison of SLC and

MLC. Then taxonomy of MLC from two different perspectives is discussed, one based on
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Table 2.11: Datasets used by MLC methods

Dataset Domain Reported in

BioASQ Biology [3]
OHSUMED Text [2], [16], [23], [29], [39]

ImageNet, PASCAL Multimedia [4]

NCI, PTC Biology [5]

Yeast Biology
[6], [7], [15], [16], [18], [19], [21]-[23], [12], [28]-[30], [35], [37],

[39], [40], [53], [56], [60], [61], [64], [66], [68], [71], [80]

Protein sequences Biology [6]

Reuters Text
[7], [11], [16], [18], [22], [23], [25], [30], [31], [39], [42]-[44],

[53], [66], [80]

Scene Images
[9], [14]-[16], [18], [19], [21]-[23], [12], [28]-[30], [35], [37],
[39]-[41], [53], [56], [60], [61], [64], [66], [68], [71], [80]

EUR-Lex Text [11], [16], [53]

HiFind Multimedia [11], [16]
Web pages Web [14], [16], [12], [43], [46], [52]

Genbase Biology [15], [18], [21], [56], [66], [68]

Medical Text
[16], [19], [21], [22], [23], [29], [30], [39], [41], [43], [52], [56],

[60], [64], [66], [68]

Mediamill Multimedia [16], [18], [19], [21]-[24], [39], [53], [63]

Enron Web
[16], [19], [21]-[23], [29], [30], [39], [41], [52], [53], [56],

[60], [64], [66], [68]

Emotions Multimedia [16], [18], [19], [21], [35], [37], [39], [56], [60], [61], [68]
FunCat, GO Biology [16]

Delicious Text [18], [19], [23], [24], [66]

tmc2007 Text [18], [19], [22], [23], [39], [53], [71]
Corel5k Multimedia [19], [21], [53], [56], [60], [64], [66], [68]

Bibtex Text [19], [22], [23], [41], [53], [56], [66], [68]

Bookmarks Text [19]
Slashdot Text [23], [39], [53]

IMDB Text [23], [39]
AP Titles, UseNet data Text [25]

CAL500 Multimedia [41], [53], [56], [60], [68]

Language log Text [53]
Image Multimedia [39], [53]

Corel16k Multimedia [53], [56], [66]

Flags Multimedia [68]
Birds Multimedia [66]

Table 2.12: Tools supporting MLC implementation

Tools Reported in

MEKA [19], [21], [73]
Mulan [6], [18], [19], [21], [37], [49], [52], [55], [56], [60], [63], [66], [68], [74]
WEKA [19], [23], [29], [30], [55], [56], [60], [63], [75]
LIBSVM [10], [11], [18], [19], [41], [47], [72], [76]
scikit-multilearn [80]

the approach and the other based on dependency. Later taxonomy of ML tasks according

to output, namely classification, ranking and combination of both is discussed. Next, the

state-of-the-art ML methods following transformation approach along with their pros and

cons are examined in detail. The state-of-the-art ML methods following adaptation and

ensemble approach are discussed in brief. Assessment of MLC differs from that of SLC.

How to measure the performance of MLC is elaborated along with taxonomy. Different ML

datasets reported in the literature and their domain are listed. Finally, tools supporting

the implementation of MLC are listed.
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Chapter 3

Literature survey

Multi-label classification (MLC) methods are broadly divided into two groups.

Group-I is termed as problem transformation and Group-II as algorithm adaptation. An-

other way to partition MLC is whether task performed is algorithm independent or al-

gorithm dependent. Other than these significant approaches, researchers have attempted

to apply MLC along with label correlation, feature selection, genetic algorithms, use of

clustering etc. In this section, these methods of MLC are explained briefly.

3.1 Variations in MLC

Discrimination is the process of giving appropriate treatment to an individual

depending on the membership in a specific group. According to Shantanu Godbole and

Sunita Sarawagi [31], text classification could be performed using:

� Discriminative techniques: SVM, decision tree, neural network

� Generative techniques: Näıve Bayes, Expectation-Maximization

Consider a set T of documents d. Initially, authors apply discriminative technique

SVM on features of documents and call it S0. Then they use S0 to augment each document

d in T with a supervised set of labels and call it S1. Then kernel function in linear SVM

is expressed as KT (dm, dn) = (< dm.dn >)/(|dm|.|dn|) and Cos similarity is expressed as

K(dm, dn) = f.KT (dm, dn) + (1 − f).KL(dm, dn). Here f can be tuned. In this equation,
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the dot product kernel between terms and label space is used. The authors have given

suggestions that negative training instances or confusion matrix are useful to improve the

algorithm. Rainbow is used for feature and text processing, and SVMLight is used for all

SVM experiments.

Many attempts are made in MLC using association classification. J. Arunadevi et

al. [32] use Apriori algorithm along with an evolutionary algorithm for MLC. They propose

a MOGA system that works in three phases. It uses problem transformation. In the first

phase, chromosomes are represented by a sequence of xiyiziwi genes. Here xiyi and ziwi

represent ith attribute and its value respectively. Fitness is checked using comprehensibil-

ity, among other parameters. Single-point crossover is applied to the chromosomes selected

by proportional strategy. In each chromosome, value at a random position is replaced by

any number among 0 to 9. This process, along with ant colony optimization, generates

rules. Fitness of these rules is checked in phase two using two parameters, namely predic-

tive accuracy and comprehensibility. Predictive accuracy is computed using several rules

satisfying all conditions in the only antecedent and that in both antecedent and consequent.

Comprehensibility is calculated using conditions and length of the rule. When learning is

complete, rules are merged in the third phase to obtain MLC. J. Arunadevi et al. show the

application of MLC for collected shopping preferences of women and how preferences vary

according to their statuses like married, working, student and mother.

Ravi Patel et al. [33] converted all the nominal attributes to numeric. For example,

let Height be an attribute that takes Short, Medium or Tall values. Then each cell in the

dataset with (Height = Short) is replaced by 1, (Height = Medium) is replaced by 2 and

(Height = Tall) is replaced by 3. For other attributes, numbers other than 1, 2 and 3 are

used. Thus each nominal attribute is replaced by a number. Next FP-growth algorithm

is used to generate association rules. As a future, it is possible to process generated rules

using genetic algorithm or heuristic search methods to get better rules.

Raed Alazaidah et al. [34] transformed multi-label dataset to single-label. For

each instance related to multiple labels, only one label is kept that is the least frequent

label in that column. They discovered positive correlations among labels and created rules

for all the instances. For example, if labels Bx and By are correlated, then created rule

was “if Bx = 1 then By = 1”. Rule-based classification algorithm PART was applied to

the rules formed in the previous step. The last step was the prediction.
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H Haripriya et al. [35] implemented k-means accompanied by association classifi-

cation. Initially, k-means was applied for clustering of attributes. Size of label space was

used to decide cluster count. Then each cluster Sx was represented by label By that had the

maximum proportion of instances with label By in cluster Sx to a total count of instances

in the cluster Sx. Next for each cluster data rules were generated. For a test instance, the

rule was constructed from each cluster.

C. Vens et al. [38] proposed three methods of classification based on the decision

tree: HMC considering all the superclasses of a node using mean, SC constructing a separate

tree for each category and HSC considering the conditional probability of class B with its

parent. HMC and HSC were applicable for classification using DAG (Directed Acyclic

Graph) while SC was not. Authors used AUPRC (Area Under Precision-Recall Curve) for

evaluating prediction performance. The main contribution of authors was the use of class

hierarchy that was not studied earlier.

Binary Relevance (BR) designs C independent classifiers if there are C labels in

the label set. This separate consideration of labels simplifies the task at the cost of losing

label relationships. To handle this issue, Read J et al. [23] proposed Classifier Chain (CC)

that considers C labels independently but in a particular sequence. For ex., the sequence

used for a label set Lx, Ly, Lz may be Lz, Ly and Lx. That is first Lz is predicted by

considering all features. Next Ly is predicted considering all features and predicted Lz.

Then Lx is predicted considering all features and predicted Ly.

Thus the relationship between labels is taken into account by each label-wise

classifier. The chain of labels can be permuted in multiple ways, and that is a very crucial

part in CC as it directly affects its accuracy. It also dictates the inability of parallelizing

the process [20] [21] [23]. Read J. et al. has introduced performance measure log loss that

uses certainty of prediction. Performance of CC is very much dependent on the chain of

labels used. Depending on the size of the label space, there can be many permutations of

labels. Finding the best chain is quite tricky. Jesse Read et al. [22] handled this issue

resulting in an ensemble of multiple CC models, each one using a different chain of labels.

The method is termed as Ensemble of Classifier Chain (ECC). It yields better accuracy

than CC. Another advantage of ECC is that it never predicts an empty label set due to

various chains.
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Classifier chains proposed by Jesse Read et al. [23] uses the greedy algorithmic

strategy. It only searches for the most probable label combination. But if all the label

combinations are explored for, then definitely the best result is obtained. This approach is

used by Probabilistic Classifier Chain (PCC) [39] that computes the conditional probability

for every label set based on the product rule of probability. It uses Näıve Bayes (NB) to

yield probabilistic output. But its complexity is high at the time of prediction. Authors

have used risk minimization model to minimize rank loss, subset 0/1 loss and hamming

loss. Ensemble methods ECC [23] and Ensemble of PCC (EPCC) [39] are also used for

experimentation. It is observed that the probabilistic versions PCC and EPCC are well-

suited/appropriate for all the three measures listed here. Also, EPCC performs the best

among all the competing algorithms used by authors getting the benefit of ensembles.

Hypergraph, a generalization of a simple graph, consists of hyperedges. Some

researchers have used hypergraph for MLC. Spectral learning feature of hypergraph was

used by Liang Sun et al. [40] to investigate the correlation of labels. It was found very

helpful for high order relations. Hung-Yi Lo et al. [41] also used hypergraph to capture the

relationship between multiple labels and the instances jointly.

Jung-Yi Jiang et al. [42], S. Lee [43] and Rubiya P U et al. [44] all worked on

a similar kind of concept. They computed the membership degree called the degree of

relevance. Three things namely the membership degree of each term tx in each category

By, that of each term tx in each document dz and that of each document dz in each category

By were obtained and combined to get final membership degree. All methods [42] [43] [44]

performed clustering that helped to reduce features as well as the computational cost of

kNN.

3.2 Fuzzy MLC

In MLC, an instance xi is associated with a set Z = {z1, z2 · · · } of labels. Label

zi is set to 1 if zi is associated with xi. Otherwise, zi is 0. Thus set Z is a crisp set. For

example, if a committee of experts is appointed to classify particular data, then every expert

may have different opinions to classify a particular instance to any class. Some experts may

assign a class to the instance completely (zi = 1), some experts may not assign a class to

the instance (zi = 0), and some experts may not be sure to assign a class to the instance
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completely or not at all. This last scenario can be described by assigning a value in between

0 and 1 to zi (i.e. 0 < zi < 1). It is called fuzzy membership [81] which reflects the practical

scenario better. It is the basic idea behind fuzzy MLC.

Definition: Let Z be a set of disjoint labels. For a set of training documents having

(xj , zj) pairs, obtain a function fz(x) to map each instance xj to a set zj , for j = 1 · · · |E|,

where E denotes a set of training examples and zj = {v|0 ≤ v ≤ 1}|Z|. Here value v

represents the degree of membership in each class Zi. A value near to 1 represents more

membership and near to 0 represents less membership.

There are few attempts to use fuzzy set theory for MLC. Z. Younes et al. [82]

propose ML classification using FV-kNN algorithm using an adaptation of k-nearest neigh-

bor with the help of fuzzy sets and veristic variables. It uses the context of the veristic

variables. Veristic variables can take more than one values, hence are similar to multivalued

variables. The traditional kNN algorithm considers all neighbors at the same level. FV-

kNN views each neighbor according to its distance. Less distance means more weightage

to that neighbor. Then for each instance in training data, its membership in each class is

computed. Knowledge obtained from the computation of class membership for instances is

represented using veristic statements. Then the knowledge of all the veristic statements is

combined, and the set of labels is predicted. Experiments are performed on three datasets,

namely emotion, scene and yeast datasets.

Jiang et al. [42] proposed FSKNN that is a Fuzzy Similarity-based approach

using kNN. It performs text classification. In Multi-Label k Nearest Neighbor, kNN is

modified for handling ML data. But high computation cost for finding neighbors is the

main overhead in ML-kNN. To cope up with this issue in FSKNN, first, the clusters of

similar documents are formed using the technique of fuzzy similarity measure (FSM) that

helps to minimize the search space of neighbors. When the similarity of cluster data and

new data computed by FSM is higher than some threshold, then label set for new data is

obtained using prior and likelihood information based on MAP rule whose base is the Bayes

theorem. Performance of FSKNN algorithm is compared with that of three algorithms. The

experimentation is done using the datasets Reuters-21578, RCV1, and 20 Newsgroups for

evaluation using micro-averaged F1 and breakeven point (BEP). Experiments indicate that

FSKNN outperforms as compared to three competing methods showing improved execution

time and precision.
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Lee et al. [43] propose ML-FRC algorithm for multi-label data following algo-

rithm adaptation approach. It deals with the overhead of high dimensionality. ML-FRC

first represents documents having high dimensionality using vectors having low dimension-

ality. It involves the conversion of documents having f features into fuzzy relevance vectors

of size |Z| where Z is a set of labels. It is achieved using fuzzy relevance measure (FRM).

This dimensionality reduction is beneficial to decrease classification time and improve the

performance of a classifier. Incrementally these vectors are then added into clusters having

similar vectors. Next, the relation between the obtained clusters and classes is searched.

Label-wise thresholds are used and the output label set is obtained. Same steps are done

during training and testing. The experiments are conducted for comparison of ML-FRC al-

gorithm with ML-KNN, Rank-SVM, BoosTexter and ML-RBF using four datasets, namely

Medical, WebKB, RCV1 and YAHOO web pages. Micro-averaged F1 and BEP and ham-

ming loss are used to measure the performance of the classifier. The authors explore the

classifier for finding documents which do not belong to any predefined class.

Chen et al. [83] use FHML algorithm for fuzzy hypergraph regularization. It is

used for prediction of the subcellular location of multi-location proteins. FHML uses three

phases. In the feature layer, the protein database is used where each protein is represented

by a vector and then decomposed into latent concepts. A feature graph is also constructed.

In the label layer, the label space is decomposed into latent concepts. A graph of labels

is also constructed. Fuzzy hypergraphs are used to explore the relation between (i) latent

codes and features, and (ii) latent codes and labels. Thus latent layer works as a middle

layer in between the label layer and the feature layer. The multi-label learning is used to

propagate information among proteins from labelled one to unlabeled one. The experiments

are performed on datasets from the Cell-Ploc 2.0 package for multi-location protein, namely,

human, eukaryote, plant, gneg, gpos and virus. The authors use metrics such as accuracy

and F-Measure that are example-based, whereas precision and recall that are label-based

metrics. The authors have reported the benefit of using correlations among features of

instances and associations among the classes together.

R. C. Prati [84] has used problem transformation approach for MLL. The author

has selected a fuzzy rule-based learning classifier to work as a base classifier. Rule-based

classifier algorithms follow either separate-and-conquer family or divide-and-conquer fam-

ily. Conventional rules associate an instance to particular category completely (represented

by 1) or not at all (represented by 0). But this hard decision is not suitable sometimes
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in few applications. Here fuzzy rules can work better, providing soft decision and grad-

ual changes in the class memberships. Here the author has used FURIA algorithm [85]

as a base classifier in the context of multi-label learning problems. FURIA adapts Rule

Induction Algorithm along with fuzzy sets. Experimentation is done using four problem

transformation methods, in a combination of the eight base-learners, for each of the six

datasets, having 32 combinations of the multi-label problem transformation methods and

base-classifier. Finally, for each combination, the five different performance measures are

calculated using 5-fold cross-validation.

To summarize, various attempts to use fuzzy sets along with MLC is presented in

this section. As it is not always possible in some cases to assign each instance to a particular

category entirely or not at all, the theory of fuzzy sets can be incorporated. As there are

two main techniques of MLC, some researchers use problem transformation with fuzzy sets,

and some researchers use algorithm adaptation with fuzzy sets. Researchers have reported

an increase in classifier performance by using fuzzy sets.

3.3 Clustering

Clustering is the most popular form of unsupervised data analysis [62]. Many

researchers have utilized clustering to reduce computational cost of MLC [24] [35] [40] [41]

[42] [43] [44] [50] [53] [59]. Some of them are already discussed briefly in other sections.

This section describes a few more attempts for the same.

Nasierding et al. [63] have designed CBMLC algorithm. It works in two phases.

In the first phase, k clusters are formed from training instances where the value of k is

specified by the user. Labels are not considered during clustering. Next in the second

phase, k multi-label classification models are constructed for k clusters independently. For

a test instance, its closest cluster is searched, and a model of that cluster is used for

classification. Clustering helps to minimize computation time required to train and classify.

Experimentation on three datasets is performed to measure micro F1. Two to ten clusters

are formed using k-means and expectation maximization. Four state-of-the-art algorithms

are used to evaluate performance after clustering is applied. According to Nasierding et

al., CBMLC is the first attempt to apply clustering analysis on the dataset before feeding

the data to a classifier.
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Pranav Gupta and Ashish Anand [64] presented “Multi-Label Classification using

Label Clustering” in the 1st Indian Workshop held at IIT Kanpur in 2013 on Machine

Learning. The basic idea of replacing less frequent label sets by frequent label sets is taken

from Pruned Set (PS). Authors apply k-means clustering on the dataset. After forming

clusters of labels, new trained data is constructed such that only those instances which

belong to label set Cx are considered for training Cx. Accordingly, the trained data in

clusters is modified. Next PS classifier is trained with modified trained data. Performance

of three measures on three ML datasets is presented.

Zhilou Yu et al. [65] have proposed a method based on Classifier Chains (CC).

In CC, Binary Relevance (BR) is applied one by one for each label. The point where CC

differs BR is that CC uses BR in a particular sequence of labels and CCx+1 takes input

from all features and prediction for label x. The crucial decision for CC is a sequence of

labels to be considered. It directly affects predictive accuracy. Zhilou Yu et al. handled this

matter by acquiring associations between labels. These associations helped to establish the

sequence of labels to be used. Authors employed k-means algorithm repeatedly to extract

correlations between labels. It is important to note that in this method, clustering of labels

was done, not instances. 5-fold cross-validation was implemented using six regular and

twelve large-scale datasets. Clustering helped to reduce the size of datasets to the large

extent that revealed in faster execution time.

G.A. Kaminka et al. [66] applied dimension reduction using orthonormalized

Partial Least Squares to find the direction of maximum covariance between label space

and feature space using SVD. The system produced clusters using k-means and learned

meta-labels using Laplacian Eigen map within each cluster. At the end system constructed

classifier chains over meta-labels for local model learning.

One challenge in MLC is the scalability of an algorithm concerning dimensions of

the label space. Because of more labels, the algorithm has to suffer from the class imbalance

problem, computational cost of training and the inefficiency for applications requiring fast

response times. Grigorios Tsoumakas et al. [23] designed the algorithm Hierarchy of multi-

label classifiers (HOMER) for handling more labels. The first root node is constructed

that consists of all the labels. Next clustering with balanced k-means is employed to divide

labels into clusters which represent new nodes. Then design a classifier for each cluster to

handle labels in that cluster only. If the predicted label is in meta-labels of the child node,

Chapter 3 | Literature survey



A Novel Algorithm for Multi-label Classification 49

then only call classifier of that child node. Advantage of balanced clustering is that the

related labels belong to the same cluster, hence the same node of the tree. So the only

classifier of that node needs to be invoked, thereby reducing the cost of prediction. Also,

each node handles less training instances, thereby improving predictive performance. Note

that clustering of labels is done by G. Tsoumakas et al. by partitioning labels into clusters

and the tree structure is used for representation [18] [21].

3.4 Natural algorithms

Inspiring from how various things work in nature, evolutionary algorithms are

evolved. Neural network in machine learning is inspired by the working of the neuron in

our brain. The life of ants inspired ant Colony algorithm used in artificial intelligence.

Attempts are made to improve MLC using such natural algorithms. Some of them are

listed here.

M. L. Zhang et al. [28] and S. Jungjit et al. [52] have used a genetic algorithm

(GA) whereas the later have also used Hill climbing. Ravi Patel et al. [33] have used

association classification and evolutionary algorithms, as mentioned in earlier section.

Rosane M. M. Vallim et al. [67] proposed MLOCS in which a genetic algorithm is

used to improve association rules. Initially, the problem transformation is done, followed by

the application of single label rule mining using association rules. Next, a genetic algorithm

is applied to obtain better rules by performing bit change either on the left side of the rule

or on the right side of the rule.

As mentioned in section 3.1.3, J. Read et al. [23] has stated that the sequence of

labels is essential to get the desired accuracy in the classifier chain (CC). Eduardo Corrêa

Gonçalves et al. [68] use CC as a base classifier, and GA is used to find the order in which

labels are used in the chain of a classifier.

S. Jungjit et al. [69] use Pearson’s correlation coefficient to measure dependency

between feature and feature as well as feature and label, and also the mutual information to

find the correlation between two labels. An algorithm is implemented using Hill climbing,

and a genetic algorithm is applied to characteristics for selection.
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3.5 Feature selection and dimensionality reduction in MLC

Many applications in real-life use data with complex structures. Some examples

are XML web document, chemical compounds, program flow, etc. Such data cannot be

represented with feature vectors accurately. In that case, the graph proves to be a better

solution [5]. When vectors are used to describe features, then the feature selection process

is somewhat more straightforward because it is assumed that all the features are available

initially. It is not possible for graphs because as the size of the graph increases, complex-

ity increases too much. Authors have mentioned the use of label associations for graph

classification with feature selection as future scope.

Trohidis, K. and Tsoumakas, G. et al. [8] follow the transformation approach. The

general procedure for feature selection by many researchers is as follows: Convert data from

multi-label to single-label. Then apply traditional single-label feature selection technique

like chi-square and use a max or average method to select best features. In a max process,

N number of features are chosen which have maximum chi-square values. In an average

technique, the average of all the values for each feature is obtained within all the labels

weighted by the prior probability of every label. Then N number of features are selected

having maximum values. BR can be applied to these selected features only. The problem

with this method is that it considers each label independently. This issue is handled by

authors using LP instead of BR. The benefit is that LP implicitly uses label correlations,

thereby giving better results when used with chi-square for feature selection. Authors have

extracted features of two categories, namely rhythmic and timbre, from music using the

Marsyas tool followed by emotion labelling and annotation by music experts.

A. Clare and R. D. King [26] has introduced a feature selection technique ML-IG to

handle multiple label data as given in section 3.2. Gao, Sheng et al. [45] have used Singular

Value Decomposition (SVD) based Latent Semantic Indexing (LSI) for feature selection.

Initially, term-document matrix M is decomposed into a multiplication of three matrices

as M=USVT where U, S and V are left singular matrix, a diagonal matrix of singular

values and right singular matrix respectively. Also, U and V are column orthonormal. U,

S and V matrices are much smaller than M. The advantage is that it dramatically reduces

computation requirements.
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There are two ways for dimensionality reduction, namely unsupervised and super-

vised. For example, first can be achieved using Principle Component Analysis and later

can be made using Linear Discriminant Analysis. Y. Zhang et al. [46] used a basic idea

which tries to identify a feature space of small size to maximize dependency between labels

and features. It uses the Hilbert-Schmidt Independence Criterion (HSIC) for measurement

of dependence. Initially, the algorithm prepares label kernel matrix L from label space Y.

Next eigenvectors are conformed to largest m eigenvalues to get projection P from original

features to the reduced features. Authors suggested a variation to use HSIC with gradient

descent.

Ji S. et al. [47] used the least-squares loss for the classification to compute the

shared structure and solved a generalized eigenvalue problem. M. L. Zhang et al. [28] have

implemented a feature selection with multi-label Näıve Bayes (MLNB) algorithm. First, use

multi-label dataset Do to apply PCA for feature extraction followed by genetic algorithm

for feature selection. If f, C and h(.) denote feature, label and classifier respectively, then

hf (C) = 1 if f is selected otherwise hf (C) = 0 if not selected. Form new dataset Dn from

selected features. Divide Dn into ten parts and use tenfold cross-validation for evaluation.

The author has used the fitness function based upon the average of hamming loss and

ranking loss generated by a portion of dataset Dn used in all the ten folds. Next step is to

apply MLNB that makes use of prior and posterior probabilities.

G. Doquire and M. Verleysen [49] used Pruned Problem Transformation (PPT)

along with mutual information. PPT overcomes the problem in LP that some label sets

possess very few instances among others affecting accuracy. In PPT, all instances having

label sets that occur in the dataset number of times less than a predefined threshold, are

removed. Such examples are replaced by examples having disjoint subsets of that label set.

Again it is checked whether newly added instances with disjoint label sets occur several

times greater than a threshold, then they are considered otherwise discarded. Assume that

occurrence count of label set {L1, L3, L4} is less than a threshold. Hence all such examples

are replaced by examples having subsets {L1} and {L3, L4} respectively. Let the occurrence

count of {L1} is still less than a threshold. All such instances are discarded. Occurrence

count of {L3, L4} is more than a threshold. Hence all such instances are considered. After

using PPT [18] [29] for data conversion, Doquire et al. apply mutual information (MI)

for feature selection. The feature selection process follows a greedy approach as it starts

with zero features followed by appending the set with feature showing the highest MI with
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label set. MI measures how much information two features contain about each other. It is

important to note that number of neighbors used for MI estimation should be less than the

threshold used for pruning in PPT. The method follows a transformation approach only

while selecting features. For MLC, all samples from the data are considered. Performance

is evaluated in terms of hamming loss and accuracy using three ML datasets.

Li S. et al. [50] used information gain for an ensemble of multi-label feature

selection. Initially, the dataset is partitioned into clusters using k-means. Label cardinality

introduced in [15] is used to set a count of clusters. Then information gain of every feature

xk for each label Ck is computed and normalized. The normalized value 0 and 1 indicate

that particular feature and label are independent or dependent, respectively. Next using

normalized values of each feature for all labels, IGS value is calculated, and the procedure

is repeated for all the features using all instances in each cluster separately. Aggregate

IGS value of each feature is computed as the summation of aggregate IGS value of that

feature among all the clusters. Summation of aggregate values of all the features S is used

to decide stopping criterion. All features are sorted in descending order of aggregate IGS

values. These features are selected one by one until the addition of their aggregate IGS

value is less than the threshold set, and only these features are considered. S × δ is used

to set a threshold. δ belongs to [0, 1]. Authors repeated experiments with δ changed from

initial value 0.05, step 0.05 and final value 0.95 and found that δ equal to 0.35 and 0.9 give

good results in text and biological domain respectively.

Li L. et al. [51] used the information gain to measure the degree of association

between feature fx and label Cy. A larger value represents better association. It calculates

information gain IGS of each feature for the whole label set. These values are normalized,

and their average is used to decide threshold µ. Every feature with IGS value less than µ

is removed from the list.

Jungjit and Freitas [52] have used Pearson’s correlation coefficient and genetic

algorithm for implementation. They represented each instance by n bits string. Bit fx =

1 or 0 denotes whether feature fx is selected or not respectively. Fitness function is based

upon Pearson’s linear correlation coefficient. Individuals at each generation are chosen

by combining tournament selection operator with elitism generator. Next crossover and

mutation are carried out. Feature selection by Hill Climbing (HC) is used for comparison

Chapter 3 | Literature survey



A Novel Algorithm for Multi-label Classification 53

of the results. It should be noted that genetic algorithm selects more features as input

features increases. HC has shown better performance in this case.

Zhang, M.L. and Wu, L. [53] have not induced classifier from the original features.

They constructed label specific features using k-means clustering. They are for producing

a classification model. That is, m features are represented using 2k clusters, k positive and

k negative. Thus m-dimensional feature space is reduced to 2k dimensional feature space

where m¿¿k (m is much larger than k) in the LIFT algorithm proposed by authors. They

designed two variants of the algorithm, one using information gain of all the features and

the other using relation between labels and instances.

K. Kira and L. A. Rendell 54 have proposed a feature selection method that is

based on a statistical approach instead of a heuristic approach. Relief is one of the feature

selection method used for single-label learning. It rewards if two attributes have different

feature value for two classes and apply a penalty if two attributes have a different value

for the same class. Newton Spolaˆor et al. [55] proposed an algorithm based on Relief to

select features in multi-label datasets. The algorithm searches for k neighbors and also uses

dissimilarity of instances to find the importance of features.

Newton Spolaˆor et al. 56 determined the contribution of each feature for each

label. An average score of each feature within all the labels is computed. Features having

average score more than a threshold are chosen.

Lazy approaches are proved beneficial while evaluating methods of feature selec-

tion. The reason is that classifiers based on lazy strategies are generally vulnerable to

irrelevant features. Three procedures of feature selection are practised by most of the re-

searchers. They are (i) filter - not dependent of the learning algorithm, (ii) wrapper - used

along with the learning algorithm and (iii) embedded - in which feature selection is the part

of the training process. Measures used to know the importance of features are information

gain (IG) [79], Relief, chi-square, Gini index, rough set, etc. When a dataset has three

labels Lx, Ly and Lz, then data with all the features and one label is constructed. For each

feature xk, IG(xk) w.r.t each label is computed separately. Feature xk having an average

of all three values w.r.t. Lx, Ly and Lz, above a threshold, is considered by the algorithm.

The used threshold value is 0.01. Spider graph is used for visualization of performance, and

comparison is made using the R framework.
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3.6 Label correlation and dependency-based MLC algorithms

Label cardinality and label density were introduced by Tsoumakas G. et al. [15].

These two characteristics denote that datasets having equal label cardinality and unequal

label density can possess varying characteristics and behave differently for MLC methods.

Former denotes the average count of labels per example, whereas the latter indicates a ratio

of label cardinality to the size of label space.

M. L. Zhang et al. [7] as described in section 2.3.2, J. Arunadevi et al. [32] and

Liang Sun et al. [40] as described in section 3.1, have used label correlation.

M. L. Zhang et al. [57] have encoded conditional dependencies of labels and feature

set using a Bayesian network structure. They treated the whole feature set as the common

parent of all the labels. Bayesian network characterized the joint probability of all labels

on the feature set with the help of DAG. Then a binary classifier was developed for each

label with the help of parent labels in DAG as added features.

Z. H. Zhou et al. [58] have explored the relationship between labels as asymmetric.

If labels By and Bz are relevant, then hypothesis generated for label By may help for the

other label Bz. If Rs(m,n) is the reuse score from label n to m, then Rs(m,n) is not

necessarily the same as Rs(n,m). Authors employed a boosting approach with hypothesis

reuse. The system produced an estimate of the label relationship as output. Authors

investigated three kinds of possible relationships among labels, namely reuse score, co-

occurrence relationship and Φ-coefficient relationship.

The basic idea behind [59] is that label relations may be shared by only a subset

of instances rather than all the instances. Exploiting such global relationships may be

misleading and may hurt the classifier performance by predicting some irrelevant labels.

The approach used is to separate training data into m groups {G1 . . . Gm} where instances

in the same group Gx share same label correlations. These groups are created using k-means

clustering by finding the similarity in label vectors, instead of feature vectors. Each group

Gx represents label correlations Rx. Each Gx is represented by a prototype vector Px. For

m groups, there are m prototype vectors {P1 . . . Pm}. Find the similarity of each instance

xk with these prototype vectors Pk to get LOC code vector Lk = {Lk1 . . . Lkm} where Lko

is the local influence of Ro on instance xk. Then train m regression models with the original

features as input and LOC codes as outputs. For an unseen instance xu, first obtain LOC
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code Lu = Lu1 . . . Lum using m regression models. Then get the final label vector Cu using

xu and Lu. As a future scope, authors mentioned the use of different clustering algorithm

and different loss function.

Ying Yu [60] has proposed two techniques MLRS and MLRS-LC in 2014. In

both methods, the rough set model based on equivalence relation and equivalence classes

is used. Samples are said to be equivalent if their attribute values are identical to each

other. It computes neighbors of each instance Xn for each label Cm. More the neighbors

with label Cm, higher is the probability of Xn related to Cm. This information is computed

globally for MLRS and locally for MLRS-LC, respectively. Global computation involves

all the instances in the dataset, and local calculation includes a small subset of instances,

thereby resulting in better results compared to a global one. The author has suggested

high dimensionality reduction as a future direction.

Chi-square is univariate and scores each feature individually. They are hence used

with problem transformation generally like BR and LP. Mutual information [61] is multi-

variate and useful to find a joint score of relevant features. Therefore mutual information

is suitable for multi-label classification.

3.7 kNN-based methods

kNN has always remained the first choice of many researchers because of its sim-

plicity. Many researchers have been inspired to adapt kNN to design MLC. Min-Ling Zhang

and Zhi-Hua Zhou [12] [89] have proposed ML-kNN method. It has proven to be the state-

of-the-art method. Authors experimented using only one dataset earlier in 2005 [89]. Later

three datasets were used for experimentation in 2007 [12]. It is designed by adapting con-

ventional kNN such that it will suit for multi-label data. The basic idea behind the work is

as follows. Let k neighbors for an instance X are computed. Then neighbors of an instance

X belonging to each label Cm of X is counted. Also, neighbors of an instance X belonging

to each label Cm that is not belonging to X is counted. Next likelihood probability is

computed using these two counts. Prior probabilities are also obtained from the training

set by counting instances having label Cm and not having label Cm respectively. Next

labels of a new instance are obtained using Maximum a posteriori that is based on Bayes

theorem [10]. The posterior probability for each label Cm is then computed for an unseen
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instance. ML-kNN [13] [18] [19] [20] [21] [22] [12] has proven to be the state-of-the-art

algorithm. This algorithm has inspired many researchers though it has one limitation of

not considering label relationship.

E. Spyromitros et al. [37] have proposed an algorithm BRkNN using a lazy ap-

proach in 2008. Instead of searching kNN separately for each label, BRkNN performs a

single search of kNN, followed by independent predictions made for each label. Initially,

kNN is applied on the multi-label data to obtain k neighbors. Once neighbors are ob-

tained, then BR classifier uses these neighbors independently for prediction of each label.

Two variations of BRkNN are also implemented by the authors. In case there is no rel-

evant label predicted, the first variation returns the most probable label and the second

variation returns p most probable labels where p is equal to an average of a count of labels

belonging to k neighbors. These methods never output empty sets. Authors have compared

their methods with LPkNN and MLkNN [12]. Authors do not safely argue that high label

density datasets lead to improved performance of the LPkNN algorithm.

Z. Younes et al. generalized ML-kNN and considered dependencies between class

labels [103]. DMLkNN does not use a particular label but considers different labels in the

neighborhood. If membership of instance x is the same as membership of instance xi in

neighborhood for all the labels, then xi is used further for extracting required information.

ML-kNN that follows an algorithm adaptation approach does not consider label

correlation and thus results in lesser prediction accuracy. A new method called CML-

kNN proposed by Chunming Liu and Longbing Cao [91], exploits label correlation using

both intra-coupling and inter-coupling label similarities between the labels to provide better

accuracy than that of ML-kNN. They consider labels in pair as L1 and L2 and compute CLS

(Coupling Label Similarity). Let L1 and L2 take values v1 and v2, respectively. How many

instances take values (v1, v2) for (L1, L2) in the dataset is counted for computing intra-CLS.

Then inter-CLS is calculated for (v1, v2) values of (L1, L2) along with each feature value

vf . These intra and inter CLS values are used for likelihood estimation.

Veloso et al. [94] proposed MLAC that is lazy. It performs the training process

for test-instance only when it arrives. It introduces multi-label class association rules as a

way to model label correlations and dependencies among labels.
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Some researchers find k nearest neighbors and use their information further in the

MLC algorithm. The correlation between labels can be considered in these algorithms to

improve performance [96].

There are few attempts to use fuzzy set theory for MLC. Young et al. [82] have

proposed ML classification using FV-kNN algorithm using an adaptation of k-nearest neigh-

bor with the help of fuzzy sets and veristic variables in 2010. It uses the context of the

veristic variables. Veristic variables can take more than one values, hence are similar to

multivalued variables. FV-kNN considers each neighbor according to its distance. Less dis-

tance means more weightage to that neighbor. Then for each instance in training data, its

membership in each class is computed. Knowledge obtained from the computation of class

membership for instances is represented using veristic statements. Then the knowledge of

all the veristic statements is combined, and the set of labels is predicted. Experiments are

conducted on three datasets, namely emotion, scene and yeast datasets.

Jiang et al. [42] proposed FSKNN that is a Fuzzy Similarity-based approach using

kNN in 2012. It performs text classification. In Multi-Label k Nearest Neighbor, kNN is

modified for handling ML data. But high computation cost for finding neighbors is the

main overhead in ML-kNN. Authors handle this issue using clusters. Clusters of similar

documents are formed using the technique of fuzzy similarity measure (FSM) that helps

to minimize the search space of neighbors. The similarity of cluster data and new data

is computed by FSM. If it is higher than some threshold, then the result label set for

that new data is obtained using the prior information and likelihood information based

on MAP rule whose base is the Bayes theorem. Performance of FSKNN algorithm is

compared with that of three algorithms. Experiments are conducted using datasets Reuters-

21578, RCV1, and 20 Newsgroups for evaluation using micro-averaged F1 and breakeven

point (BEP). Experimentation indicates that FSKNN outperforms as compared to three

competing methods showing improved execution time and precision.

3.8 Motivation

Classification methods that handle multi-label data follow one of the two ap-

proaches. Those methods that transform data provide simplicity at the cost of loss of
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information. This drawback is overcome by an algorithm adaptation approach that is

found to be superior when compared with the problem transformation approach.

MLkNN appears currently to be the best algorithm. This state of the art method

adapts kNN (k nearest neighbors) to find neighbors that are followed by extraction of

information. This information is useful for further computation. However, the algorithm

has a drawback of considering each label separately and thereby not considering label

relationships.

The selection of the most appropriate neighbours is crucial for any kNN-based

algorithm. Most of the work use only features to measure the similarity between instances.

Computation of feature similarity has been commonly used in existing approaches, including

MLkNN. It does not use labels for the selection of neighbors. However, in the case of multi-

label classification, an instance is associated with more than one label. Hence it would

be better to consider labels also in addition to features for the selection of neighbors to

improve classifier performance further. Labels can be utilized to measure dissimilarity as

instances having common labels generally indicate identical label correlations. Thus in the

multi-label context, a new approach may be devised for further performance enhancements

by considering label dissimilarity in addition to feature similarity.

The use of the Euclidean distance metric for computation of feature similarity is

very common in existing approaches, including MLkNN. Investigation of the performance

of the devised algorithm with the use of other distance metrics such as Manhattan and

Minkowski for feature similarity and label dissimilarity is also needed w.r.t. various perfor-

mance parameters and computation time.

Study and performance analysis of devised algorithm with variation in input pa-

rameters such as ‘k’ (number of neighbours), threshold, and smoothing parameter is re-

quired to be carried out.

Feature and instance selection are often used in the literature to reduce compu-

tation time while improving the performance of the classifier. In the case of multi-label

classification, labels may be related to different features. So feature selection becomes

tricky. Thus, the performance of the devised algorithm with and without feature and

instance selection needs to be observed.
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Some datasets consist of a large number of examples as compared to the number

of features and labels. It would be interesting to test the capability of the devised algorithm

in the identification of appropriate neighbours for multi-label data.

Usually, outliers affect the performance of a conventional classifier. As per the

literature studied, it seems that it has not been investigated for multi-label classification

and thus should be investigated.

Recognizing the need for handling some of the issues mentioned above and dealing

with them motivated us to carry out the research work undertaken to overcome some of

these issues associated with kNN-based multi-label classification methods.
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Chapter 4

Methodology and Proposed

Algorithms

As discussed in previous chapters, multi-label classification is applicable in differ-

ent day to day applications. Hence it has become a key concept in the field of classification

and machine learning. A review of prominent research work in the literature is presented

in chapter 3. This chapter deals with the details of proposed algorithms for multi-label

classification. In this chapter, two novel algorithms for multi-label classification, namely

MLFLD and MLFLD-MAXP, are described in detail. How multi-label data can be pre-

processed before feeding it to proposed algorithms is also discussed using three different

algorithms, namely MLFS, MLIS and MLFSIS, respectively.

4.1 Methodology

A general framework of a multi-label classifier is as shown in Figure 4.1. Various

forms of preprocessing such as normalization, feature and/or instance selection, treatment

for missing values etc. are performed on input instances that many times help to improve

the performance of a classifier. A classifier is then trained using labelled input instances by

either following the “problem transformation” or “algorithm adaptation” approach. Once

the classifier is trained, it is used to predict the label(s) for unseen instances.

Though the process looks straightforward, some requirements should be considered

for multi-label classification.
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Figure 4.1: General Framework for Multi-label Classification

� Need to decide which forms of data preprocessing should be applied. It is observed

that preprocessed data has always improved classifier performance.

� Whether problem transformation or algorithm adaptation should be used, each one

has pros and cons. The first approach is simple but may lose label correlation leading

to performance degradation. The later approach considers label correlation and thus

provides better performance, but is complex to implement.

� Whether “single label”, “pair of labels”, “subset of labels” or “all the labels” should

be considered at a time. Single label technique loses label correlation completely.

Pair of labels technique considers relation between two labels involved in the pair

only but performs better than a single label technique. A subset of labels technique

operates on a subset, hence works better than both single label and pair of labels

methods, but it is more complicated when compared with the other two methods.

Considering all the labels increases complexity compared to others, but may perform

better comparatively. In this work, “all the labels” technique is used.

� When classification or ranking of labels should be performed, generally, classification

is carried out based on votes and ranking is carried out based on probabilities and

can be used for classification as well. In the case of ranking, the decision of threshold

is very crucial as it directly affects the predictive performance of an algorithm.

A general methodology for k-Nearest Neighbors (kNN) and Maximum a Posteriori

(MAP) based multi-label algorithms is shown in Figure 4.2. MLDB in Figure 4.2 stands

for a multi-label dataset.
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Figure 4.2: General Framework for kNN and MAP based Multi-label algorithms

4.2 Proposed algorithms

As proposed algorithms are based on two key concepts, namely feature similarity

and label dissimilarity, some requirements need to be considered.

� A mechanism to compute feature similarity

� A mechanism to compute label dissimilarity

4.2.1 Proposed algorithm MLFLD

Proposed algorithm for Multi-Label classification by exploring Feature Similarities

and Label Dissimilarities (MLFLD) aims to improve the performance of the multi-label

classifier through proper selection of neighbors. It uses labels of known instances along

with their features while searching for the neighbors. Then information extracted from
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Figure 4.3: Framework for MLFLD

obtained neighbors is utilized for the estimation of likelihood probabilities of each label.

These probabilities, along with computed prior probabilities of the particular label, are

further used to predict that label for an unlabeled instance. Framework for MLFLD is

shown in Figure 4.3.

The algorithm takes the following input parameters.

1. MLDB: Dataset having q labelled instances {X1 . . . Xq}. Let each instance Xj be

represented by a pair of vectors, (xj , yc), where vector xj , (j = 1, 2 . . . f) be the set

of features and vector yc (c = 1, 2 . . . l) be a set of labels. Knowledge obtained from

these instances is utilized to select neighbors.

2. The number of neighbors (k): It decides how many nearest neighbors of each

instance are to be considered by the algorithm.
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3. Threshold (Th): It is a user-defined value between 0 and 1. It is used to decide

whether a particular label should be associated with the underlying instance or not

denoted by 1 and 0 respectively. In Eq. (6), when the ratio is greater than or equal to

a threshold, then the corresponding label is set to 1. Otherwise, it is set to zero. The

threshold can be user-defined or calibrated. Default value used for experimentation

in this work is 0.5 as suggested in the literature [20] [12] [37] [42] [89].

4. Smoothing parameter (p): It is used in Eq. 4.1, Eq. 4.3 and Eq. 4.4. It is

generally used to avoid resulting zero value of an operation. Default value used for

experimentation in this work is 1 that denotes Laplace smoothing

citeR19 [12] [37] [42] [89].

5. Fdistance: Parameter that denotes distance metric used to compute feature simi-

larity (Default metric: Euclidean distance).

6. Ldistance: Parameter that denotes distance metric used to compute label dissimi-

larity (Default metric: Hamming distance).

Output: Prediction of labels for unseen instance t

Pseudocode for MLFLD is given in Algorithm 1. It takes MLDB, k, Th, p,

Fdistance and Ldistance as input.

MLFLD consists of two stages. Stage one is divided into three sub-stages:

1. Computation of prior probability distribution (Lines 2-4): Initially instances in MLDB

associated with label c is counted. This count cnt(c), p (smoothing parameter) and q

(size of MLDB) are used to compute prior probabilities of every label c using Eq.4.1

and Eq.4.2. For each label c, two probabilities are calculated:

(a) Probability P (Hc = 1) of the event that “an instance belongs to label c”.

P (Hc = 1) = (p+ cnt(c))/(2× p+ q) (4.1)

(b) Probability P (Hc = 0) of the event that “an instance does not belong to label

c”.

P (Hc = 0) = 1− P (Hc = 1) (4.2)
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Algorithm 1: MLFLD

Input : MLDB, k, Th, p, Fdistance, Ldistance

Output: Prediction of labels for unseen instance t

1 begin

2 foreach label c in each instance ∈ MLDB do
3 Compute Priorc: P (Hc = 1) and P (Hc = 0) using Eq.4.1 and Eq.4.2
4 end

5 foreach instance Xi ∈ MLDB (1 ≤ i ≤ q) do
6 Ni = φ // Neighbors of Xi

7 foreach instance Xj ∈ MLDB (1 ≤ j ≤ q), i 6= j do
8 // fs() and ld() use Fdistance and Ldistance parameters

Wj = fs(Xi, Xj) + diff(Xi, Xj) + ld(yi, yj)
9 if |Ni| ≤ k then

10 Ni = Ni
⋃
{Xj}

11 end
12 else
13 Find an instance Xm ∈ Ni having max weight Wm

14 if Wm > Wj then
15 // Replace Xm by Xj

16 Ni = Ni − {Xm}
17 Ni = Ni

⋃
{Xj}

18 end

19 end

20 end

21 end

22 foreach label c in j neighbors (0 ≤ j ≤ k) do
23 Estimate Likelihoodc: P (E = j|Hc = 1) and P (E = j|Hc = 0) using Eq.4.3

and Eq.4.4 respectively
24 end

25 Nt = φ // Neighbors of instance t
26 foreach instance Xi ∈ MLDB (1 ≤ i ≤ q) and instance t do
27 // fs() uses Fdistance parameter Wi = fs(Xi, Xt) + diff(Xi, Xt)
28 if |Nt| ≤ k then
29 Nt = Nt

⋃
{Xi}

30 end
31 else
32 Find an instance Xm ∈ Nt having max weight Wm

33 if Wm > Wi then
34 // Replace Xm by Xi

35 Nt = Nt − {Xm}
36 Nt = Nt

⋃
{Xi}

37 end

38 end

39 end
40 foreach label c do
41 Predict tc for an instance t using Priorc and Likelihoodc using Eq.4.5 and

Eq.4.6 respectively
42 end
43 end
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2. Selection of k nearest neighbors (Lines 5-21): After calculating prior probabilities,

likelihood probabilities are estimated from the knowledge obtained from k nearest

neighbors (kNN). Neighbors are obtained for each instance X in MLDB. MLFLD

takes into account features as well as class labels while deciding the nearest neighbors

as follows (Line 8):

(a) Function fs(.): is used for checking similarity of features between the instances

using metric in Fdistance parameter.

(b) Function ld(.): uses metric in Ldistance parameter to find label dissimilarity.

(c) Function diff(.): is used to compute the difference between the values of features

between the two instances. This function returns summation of absolute values

of differences in features.

Thus the information obtained from features as well as labels together is used to

weigh neighbors. Initial k computed weights, for instance, Xi is considered as its k

neighbors denoted by set Ni (Lines 9-11). After that, the largest weight in set Ni is

replaced by newly calculated weight if new weight is smaller (Lines 12-19).

3. Estimation of a likelihood probability distribution (Lines 22-24): MLFLD decides how

many instances in MLDB have a total number of 0, 1 . . . k neighbors where each neigh-

bor is related with label c. This information is stored in F
(c)
1 [0 . . . k] and F

(c)
0 [0 . . . k]

arrays respectively, depending on whether instance under consideration whose neigh-

bors are observed, is related or not related with label c. This knowledge is utilized to

estimate likelihood probabilities. Two probabilities are estimated:

(a) The probability that an instance x has j neighbors related with label c when

“an instance x belongs to the label c”.

P (E = j|Hc = 1) =
p+ F

(c)
1 [j]

p× (1 + k) + Σk
r=0F

(c)
1 [r])

, 0 ≤ j ≤ k (4.3)

(b) The probability that an instance x has j neighbors associated with label c when

“an instance x does not belong to the label c”.

P (E = j|Hc = 0) =
p+ F

(c)
0 [j]

p× (1 + k) + Σk
r=0F

(c)
0 [r])

, 0 ≤ j ≤ k (4.4)

Stage two is further divided into two sub-stages:
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1. Searching k nearest neighbors of an unlabeled instance (Lines 25-39): Computation

of feature similarity using Fdistance metric and difference of features of an unseen

instance t with each instance in MLDB is done using fs(.) and diff(.) respectively

(Line 27). It is followed by selection of k nearest neighbors for the unseen instance t

denoted by set Nt (Lines 28-38).

2. Predicting labels for the unlabeled instance (Lines 40-42): Number of neighbors of an

unseen instance t from set Nt related with each label c is measured using Eq.4.5.

This count, along with prior and likelihood probabilities, is used to find the ratio in

Eq.4.6 to decide whether the unseen instance t is associated with the label c or not.

j =
k∑

m=1

N (c)
m (4.5)

tc = 1, if
P (Hc = 1)× P (E = j|Hc = 1)

P (Hc = 1)× P (E = j|Hc = 1) + P (Hc = 0)× P (E = j|Hc = 0)
≥ Th

(4.6)

As shown in chapter 6, experimental results show that among all the competing

algorithms, ML-kNN has shown better performance. Hence time complexity of MLFLD is

compared with that of ML-kNN which uses only feature similarity. Average time required

for both the algorithms namely

1. ML-kNN proposed by Zhang and Zhou [12] and

2. Proposed MLFLD Algorithm

is compared. ML-kNN has a time complexity [25] of O(q2.f+c.q.k) for computing

prior and likelihood probabilities and O(q.f + l.k) for computation related to unlabeled

instances. Whereas MLFLD has a time complexity of O(q2.x + c.q.k) and O(q.x + l.k).

Here k, f, l, and q represent a count of nearest neighbors, features, labels and instances in

MLDB respectively. x denotes sum of f and l. Thus time complexity of MLFLD is more

than that of ML-kNN. However, MLFLD shows better performance in terms of various

performance parameters presented in chapter 6.
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Figure 4.4: Framework for MLFLD-MAXP

Advantage of MLFLD is that it considers all the labels to find dissimilarity be-

tween labels. Thus it overcomes the drawback of the competing algorithm ML-kNN of not

considering the relationship between labels, at the cost of requiring slightly more time.

4.2.2 Proposed algorithm MLFLD-MAXP

Generally it is assumed in MLC that set of labels has at least one element [97]

[99] [100] [101] [102]. With this assumption, an instance is considered useless if it is not

associated with any label. Otherwise, an instance is related to any number of labels.

Proposed algorithm MLFLD discussed in the previous section does not predict any

label for some test instances. For such cases, MLFLD algorithm is extended to avoid no
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label prediction cases. Extended algorithm MLFLD with MAXimum Probability (MLFLD-

MAXP) predicts that label which is the most probable for instance, under consideration

among all the labels in the label set. Figure 4.4 shows the framework for Algorithm MLFLD-

MAXP.

MLFLD estimates probabilities for all labels. Those labels having probabilities

below the user-defined threshold are not associated with corresponding instances. For

instance, under consideration, if probabilities of all labels are less than the threshold, then

no label is associated with that instance. This scenario is handled by proposed algorithm

MLFLD-MAXP (MLFLD with MAXimum Probability) as shown in pseudocode of the

Algorithm in Figure 4.2.2 (b). It takes input parameters same as that of MLFLD, namely

MLDB, number of neighbors (k), threshold (Th), smoothing parameter (p), Fdistance and

Ldistance.

Algorithm 2: MLFLD-MAXP

Input : MLDB, k, Th, p, Fdistance, Ldistance

Output: Prediction of labels for unlabeled instance t

1 begin

2 1-42: Prediction of labels for instance t using Algorithm MLFLD
3 //if no predicted label, predict label with the highest probability

4 if ∀lc=1tc = 0 then

5 x = argmaxc
P (Hc=1)×P (E=j|Hc=1)

P (Hc=1)×P (E=j|Hc=1)+P (Hc=0)×P (E=j|Hc=0) ≥ Th
6 Set tx = 1

7 end
8 end

Lines 1-42 in Algorithm 2 are the same as that in Algorithm 1 for MLFLD. These

lines predict labels, for instance, t. It calculates and checks ratio of the probabilities for

each label c. If the ratio is above threshold Th, then label c is associated with instance

t, otherwise not. If no label is associated with instance t, then MLFLD-MAXP algorithm

predicts that label which has the highest probability computed in Line 5, because in real

applications every instance belongs to at least one label to a certain extent in some context.
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Figure 4.5: Distance metrics used for computing feature similarity and label dissimilarity

4.2.3 Distance metrics used for computing feature similarity and label

dissimilarity

Both MLFLD and MLFLD-MAXP algorithms compute feature similarity and

label dissimilarity using Fdistance and Ldistance parameters. These parameters can take

values shown in Figure 4.5.

4.2.3.1 Algorithm to find feature similarity between two instances

Fdistance parameter that denotes distance metric used to compute feature simi-

larity can take the following values:

� Euc: Use Euclidean distance (default).

� Man: Use Manhattan distance.

� Min: Use Minkowski distance.

Pseudocode for the algorithm to find feature similarity between two instances Xi

and Xj is shown in Algorithm 3.

Among three distances, Euclidean distance is the most popular measure used to

find feature similarity. The criterion used affects the computation time of the algorithm.
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Algorithm 3: fs

Input : Xi, Xj

global: Fdistance, Number of features f

Output: Feature similarity between Xi and Xj instances

1 begin

2 if Fdistance = Euc then

3 return
√∑f

m=1(Xim −Xjm)2

4 end
5 if Fdistance = Man then

6 return
∑f

m=1 |Xim −Xjm|
7 end
8 if Fdistance = Min then

9 return (
∑f

m=1(Xim −Xjm)3)1/3

10 end
11 end

4.2.3.2 Algorithm to find label dissimilarity between two instances

Ldistance parameter that denotes distance metric used to compute label dissimi-

larity can take the following values:

� Hamming: Use Hamming distance (default).

� Jaccard: Use Jaccard distance.

� SimIC: Use SimIC distance.

Algorithm to find label dissimilarity is described in Algorithm 4.

Hamming distance between two strings is the number of positions where the char-

acters of two strings are not the same. MLFLD uses a similar method to obtain the statistics

from the total number of distinct labels of two instances collectively and the total number

of common labels between two instances. The difference between these two values divided

by a total number of labels is used to calculate label dissimilarity between two instances

[30] [31]. Jaccard distance also uses union and intersection of labels to compute distance

[92] [93]. For proposed SimIC distance, IC(.) denotes information content. The idea is

taken from Similarity for Graphical Information Content (SimGIC) [92] [93]. It is used

when labels are arranged as a hierarchy. It is different from Jaccard and Hamming in the

sense that it does not count terms. It uses the information of label node like its frequency of
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Algorithm 4: ld

Input : Xi, Xj

global: Ldistance, Number of labels c

Output: Label dissimilarity between Xi and Xj instances

1 begin

2 if Ldistance = Hamming then

3 return
|Labels(Xi)

⋃
Labels(Xj)|−|Labels(Xi)

⋂
Labels(Xj)|

c
4 end
5 if Ldistance = Jaccard then

6 return 1− |Labels(Xi)
⋂
Labels(Xj)|

|Labels(Xi)
⋃
Labels(Xj)|

7 end
8 if Ldistance = SimIC then

9 return 1− IC(Labels(Xi)
⋂
Labels(Xj))

IC(Labels(Xi)
⋃
Labels(Xj))

10 end
11 end

occurrence in the hierarchy. To find IC of a set, it takes the logarithm of the multiplication

of probabilities of each set element.

SimIC computes information content for class label c utilizing the prior probability

of that label in the dataset denoted by p(c) as shown in Eq.4.7.

IC(c) = −logp(c) (4.7)

IC({L1, L2 . . . Ln}) =

n∑
i=1

−logp(Li) (4.8)

For a set A = {L1, L2 . . . Ln} of labels, IC(A) is calculated using the summation of the

information content of each label in the set A. It adds logarithm of the probability of each

set element.

4.2.4 Algorithm Multi-label Feature Selection (MLFS)

Feature selection is used in the literature effectively as it reduces the number of

features. It is useful for raising the classifier performance as well as speed up the process.

For multi-label classification (MLC), many researchers have proposed various methods to

perform feature selection, as seen in section 3.6 of Chapter 3.

In this work, problem transformation followed by feature selection is used to find

features to which each label is related. It is done for each label independently. Once features
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Figure 4.6: Framework for the Proposed Algorithm MLFS

are selected, they all are combined along with all the labels to form MLDB with selected

features (MLDB with FS) as shown in Figure 4.6.

MLFS algorithm combines all the selected features for all the labels. It considers

only those features that follow specific criteria during selection. Framework and pseudocode

for MLFS are shown in Figure 4.6 and Algorithm 5, respectively.

Algorithm 5: MLFS

Input : MLDB Qfxl with f features, l labels and q instances
Feature selection criteria θ

Output: MLDB QFgxl with g features (g ≤ f), l labels and q instances

1 begin

2 foreach label c do
3 // Construct dataset with all features and only label c.
4 Qc =

∏
F1...fLc

5 Apply feature selection constraint θ on Qc to get QFc.

6 end
7 // Combine all selected features for all labels to form MLDB.

8 QF =
⋃l
c=1QFc

9 end
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Figure 4.7: Framework for Algorithm MLIS

4.2.5 Algorithm Multi-label Instance Selection (MLIS)

Instance selection (sampling) can be made using two ways: with replacement and

without replacement. In the former one, an instance that is already selected may be selected

again (an instance may be selected one or more number of times). In the later method, an

instance chosen once is not considered again for selection. Also, the sample size needs to

be decided that tells count of instances to be selected from MLDB. Sampling also helps to

speed up the process of classification by reducing the size of the input dataset.

Framework and pseudocode for MLIS are shown in Figure 4.7 and Algorithm 6,

respectively. Algorithm MLIS takes MLDB and sampling parameters as input. Sample size

parameter denotes percent of instances to be retained in MLDB.

Algorithm 6: MLIS

Input : MLDB Qfxl with f features, l labels and q instances
Sampling parameters:
- Replacement strategy α (With replacement/Without replacement)
- Sample size β

Output: MLDB QIfxl with f features, l labels and r instances (r ≤ q)
1 begin

2 // Apply sampling strategy α to select β instances.
3 QI = δα,βQ
4 end
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Figure 4.8: Framework for Algorithm MLFSIS

4.2.6 Algorithm Multi-label Feature and Instance Selection (MLFSIS)

Algorithm MLFSIS takes MLDB, feature selection criteria and sampling param-

eters as input. First, it performs feature selection using problem transformation. Then

on the obtained MLDB sampling is performed. Framework and pseudocode for MLIS are

shown in Figure 4.8 and Algorithm 7, respectively.

4.3 Expected Behaviors of Algorithms

Based on the analysis of pseudocodes for the proposed algorithms presented in

section 4.2,
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Algorithm 7: MLFSIS

Input : MLDB Qfxl with f features, l labels and q instances
Feature selection criteria θ
Sampling parameters:
- Replacement strategy α (With replacement/Without replacement)
- Sample size β

Output: MLDB QFIgxl with g features (g ≤ f), l labels and r instances r ≤ q
1 begin

2 foreach label c do
3 // Construct dataset with all features and only label c.
4 Qc =

∏
F1...fLc

5 Apply feature selection constraint θ on Qc to get QFc.

6 end
7 // Combine all selected features for all labels to form MLDB.

8 QF =
⋃l
c=1QFc

9 // Apply sampling strategy α to select β instances.
10 QI = δα,βQ
11 end

� Proposed Algorithm MLFLD may result in better hamming loss than proposed algo-

rithm MLFLD-MAXP as later algorithm assigns at least one (most probable) label

to the unseen instance if no label is predicted. Forcing MLFLD-MAXP to assign at

least one label may improve accuracy, subset accuracy and F1 measure, but may or

may not improve hamming loss.

� Proposed Algorithms using Manhattan distance for computation of feature similarity

would require minimum time and that using Minkowski would require maximum time.

Euclidean distance would require time in between that of both distance metrics.

It is because of square and cube operations involved in Euclidean and Minkowski

respectively.

� Performance of the proposed Algorithms may vary for different distance measures

used for label dissimilarity.

� Proposed Algorithms should result in better F1 measure, accuracy and subset accu-

racy.

� Use of multi-label feature selection followed by proposed algorithms may improve

performance.
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� Datasets preprocessed by multi-label feature and instance selection fed to the pro-

posed algorithms should result in raised performance.

� Proposed algorithms should perform better on datasets when outliers are removed.

� They should finish on large datasets.

� Changing the smoothing factor and number of neighbors may not show more variation

in performance.

� Threshold variation may show different performance according to a dataset.
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Chapter 5

Experimental setup

Algorithms to perform multi-label classification by exploring feature similarities

and label dissimilarities (MLFLD) and its extension using maximum probability (MLFLD-

MAXP) are presented in chapter 4. Algorithms MLFS, MLIS and MLFSIS to describe

how feature and/or instance selection can be performed before multi-label classification are

also presented in the previous chapter. In this chapter, the experimental setup used for

the execution of proposed algorithms and datasets used for experimentation is described in

detail.

5.1 Multi-label Data

Multi-label datasets representing data from different domains are available in the

literature. Some of them are Emotions from multimedia, Yeast from biology, Reuters from

text and Enron from the web. Multi-label datasets are available from different resources

like Mulan, MEKA and LibSVM [16-19]. Table 5.1 and Table 5.2 show brief information

of benchmark multi-label datasets used for experimentation. All the datasets consist of

numeric features. Datasets in the tables are roughly ordered by F x L x E. Larger datasets

are handled separately using train-test splits. Cross-validation on them is not possible on

the configuration used for experimentation because of memory limitation. All the datasets

are normalized before using.
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5.1.1 Characteristics of datasets

Elisseeff and Weston preprocessed Yeast dataset that contains information of 2417

genes [98]. Each gene is described by 103 numeric features that are associated with a subset

of 14 functional classes. Each gene belongs to categories that are arranged as a hierarchy

of four levels. Dataset used in this work uses only classes at the top level as used by many

researchers in the literature. Some of the categories are energy and protein synthesis.

Emotional categorization of music is available in Emotions dataset. 593 tracks of

music are described using 72 features and belong to a subset of 6 categories of emotions.

In this dataset, Relaxing and Quiet-still are emotions that are associated with a maximum

and a minimum number of tracks of songs. In Scene dataset, each instance is a still scene

of the environment. Each scene is made up of 294 visual features and belongs to a subset

of 6 contexts. Total of 2407 scenes is described.

Image dataset is also similar to Scene. It consists of 2000 instances where each

instance is an image of a natural scene. Each image is assigned to a subset of 5 labels

manually by experts [12] based on 294 features. For example, an image may describe tree

and sea or sunset and mountain.

CAL500 is the only dataset among all the datasets used for experimentation in

this work that has labels almost three times more than features. In the remaining datasets,

feature count is lesser or equal to that of labels. Note that every label set in CAL500 is

unique and occurs precisely once. That is a percentage of unique label sets is 100%.

It should be noted that all the datasets have avg. number of labels (LC) is less

than five except for CAL500 that has LC 26. Cbmi09-bow and Mediamill are datasets

which contain information about 43907 videos. These videos belong to 101 concepts and

are described by 100 and 120 features in both datasets respectively. Cbmi09-bow has train

and test splits of 22000 and 21907 respectively whereas Mediamill has train and test splits

of 30993 and 12914 respectively.

First five datasets in Table 5.1 are comparatively smaller hence are used for cross-

validation experiments. Whereas the last two datasets in Table 5.1 have a large number of

examples. They, along with all datasets in Table 5.2, are used for train-test experiments

only.

Chapter 5 | Experimental setup



A Novel Algorithm for Multi-label Classification 81

Table 5.1: Characteristics of Datasets

Datasets Type F L E Cardinality Density %Unique
Emotions Media 72 6 593 1.868 0.311 4.6
Image Media 294 5 2000 1.236 0.247 1.0
Scene Media 294 6 2407 1.074 0.179 0.6
Yeast Bio 103 14 2417 4.237 0.303 8.2
CAL500 Media 68 174 502 26.044 0.15 100.0

Large Datasets
Cbmi09-bow Media 100 101 43907 4.376 0.043 14.9
Mediamill Media 120 101 43907 4.376 0.043 14.9

F: #Features, L: #Labels, E: #Examples

5.1.2 Label Distribution

� Label Cardinality, Density and Unique

Table 5.1 and 5.3 show label cardinality (LCardinality) and label density (LDensity) of

datasets [13] [18]. LCardinality and LDensity denote the average number of labels per

example and the ratio of LCardinality to the number of labels, respectively [5] [24]. Unique

(referred to as label diversity by some researchers [12]) represents how many combinations

of labels in the dataset are distinct. Figure 5.1 shows their relation for 7 datasets.

Figure 5.1: Label statistics for datasets

LCardinality of Emotions, Scene and Image is one means many instances are as-

sociated with the single label only. Yeast, Mediamill and Cbmi09-bow having LCardinality

4 indicate many instances associated with approx. 4 labels. Only CAL500 is having larger

cardinality showing instances associated with approx. 26 labels.
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Table 5.2: Statistics of datasets

%Cardinality of Ex. %Ex/Label
Dataset % ZLE % MLE

Min Avg. Max Min Avg. Max
%Skew %Outlier

Emotions 0 70.0 16.7 33.3 50 25.0 31.0 44.5 13.7 18.9

Image 0 22.9 20.0 20.0 60 20.5 24.7 29.0 18.9 86.2

Scene 0 7.4 16.7 16.7 50 15.1 17.9 22.1 16.8 72.2

Yeast 0 98.7 7.1 28.6 78.6 1.4 30.2 75.1 9.8 29.6

CAL500 0 100 7.5 14.9 27.6 1.0 14.9 88.4 0.2 16.3

Large Datasets

Cbmi09-bow 3.9 89.6 0 4.0 17.8 0.1 4.3 77.1 5.4 22.7

Mediamill 3.9 89.6 0 4.0 17.8 0.1 4.3 77.1 5.4 5.2

MLE: #Multi-Label Examples (Examples with #labels > 1)

ZLE: #Zero-Label Examples (Example with no/zero label)
Skew: Proportion of most frequent label set

Outlier: Feature having std. deviation ±1.5 (3) from mean

LDensity of all datasets is very small, except Emotions and Yeast followed by

Image. In the first two datasets, around 30% while in the later around 25% of labels are

related to almost every example.

Every label set in CAL500 is unique and occurs exactly once. That is the per-

centage of Unique label sets is 100%. It shows that its labelling scheme is highly irregular

compared to remaining datasets. Mediamill and Cbmi09-bow have 14% unique label sets.

Only Cbmi09-bow and Mediamill datasets possess records having no (zero) rel-

evant labels denoted by ZLE. All other datasets have no ZLE. Scene has only 7% record

related to two or more labels denoted by MLE. Image has 22% MLE. All the remaining

datasets have more than 70% MLE (Figure 5.2).

Figure 5.2: Statistics of Multi-label examples in datasets

Image and Scene have comparatively high label skew as shown by %Skew followed

by Emotions and Yeast. That is a relatively large number of examples are related with
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Figure 5.3: Label distribution for datasets

most frequently occurring label combination while remaining examples occur with rare

label combination. CAL500, Cbmi09-bow and Mediamill have smaller label skew.

Examples/label (Ex/Label) also reflect the skew of labels. Observe that Scene

and Image have larger skew, which is indicated by a small value of maximum %Ex/Label

in Table 5.2 and Figure 5.3.

Outliers deviate performance of a classifier [75]. Generally, when a data point lies

specified standard deviations away from the mean value, then it is termed as an outlier.

The default value is 3. %Outlier in Table 5.2 represents the same. It can be observed that

Image and Scene have a large percentage of outlier values, namely 86 and 72, respectively.

Yahoo dataset consists of data that is grouped into different categories from text-

domain. It describes data of web pages. Each type describes different data. This data

represents things that are linked “from web pages that belong to “yahoo.com”. Data set is

available at “http://www.kecl.ntt.co.jp/as/members/ueda/yahoo.tar.gz”. These datasets

have high dimensionality. Hence they are preprocessed by researchers [12] using document

frequency to select terms. Nine preprocessed datasets from Yahoo shown in Table 5.3 are

used for experimentation in this work.

Unique label set percent lies among 5 to 16 for Yahoo datasets. That is, label sets

have less skew. Many instances are relevant to similar label sets.

Table 5.4 shows that datasets have 20% to 40% outliers approx. Reference and

Society train sets have almost 48% outliers.
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Table 5.3: Characteristics of Yahoo datasets

Datasets F L
Train/
Test

E
Cardi-
nality

Density
Unique

%

train 2000 1.63 12.7
Arts 462 26

test 3000 1.64
0.06

11.4

train 2000 1.59 4.8
Business 438 30

test 3000 1.59
0.05

4.4

train 2000 1.47 10.0
Education 550 33

test 3000 1.46
0.04

7.4

train 2000 1.43 7.4
Entertainment 640 21

test 3000 1.42
0.07

5.9

train 2000 1.67 8.2
Health 612 32

test 3000 1.66
0.05

6.5

train 2000 1.16 6.6
Reference 793 33

test 3000 1.18
0.04

5.4

train 2000 1.49 13.1
Science 743 40

test 3000 1.43
0.04

9.2

train 2000 1.27 6.9
Social 1047 39

test 3000 1.29
0.03

6.0

train 2000 1.70 16.5
Society 636 27

test 3000 1.68
0.06

13.8

F: #Features, L: #Labels, E: #Examples

Figure 5.4: Label distribution for Yahoo datasets

Yahoo datasets have comparatively less skew except for Business whose labels

show 53% Skew that is also reflected by 86% Ex/Label.

Observe that %Ex/label increases when %Skew decreases and vice-versa in Figure

5.3. But in Figure 5.4, it is in contrast. %Ex/label increases (decreases) when %Skew

increases (decreases). In Figure 5.4, %Skew (grey) line shows opposite behavior to that of

%Ex/Label (orange) line. That is, for less skew, %Ex/label is more and vice-versa.



Table 5.4: Statistics of Yahoo datasets

%Card. of Ex. %Ex/Label
Datasets Type

%
ZLE

%
MLE Min Avg. Max Min Avg. Max

%
Skew

%
Outlier

train 0 44.5 0.0 3.8 42.3 0 6.3 24.5 16.4 33.1
Arts

test 0 43.6 3.8 3.8 53.8 0 6.3 24.8 17.2 34.1

train 0 42.2 3.3 3.3 33.3 0 5.3 86.8 53.3 38.0
Business

test 0 41.9 3.3 3.3 40.0 0 5.3 86.3 53.9 38.7

train 0 33.5 3.0 3.0 21.2 0.1 4.4 30.6 21.0 42.5
Education

test 0 33.7 3.0 3.0 18.2 0 4.4 32.2 22.2 40.7

train 0 29.3 4.8 4.8 42.9 0.1 6.8 28.4 21.3 32.0
Entertainment

test 0 28.2 4.8 4.8 81.0 0.1 6.7 28.9 21.7 33.1

Train 0 48.1 3.1 3.1 21.9 0 5.2 50.4 29.8 44.2
Health

Test 0 47.2 3.1 3.1 28.1 0 5.2 50.6 30.3 37.2

Train 0 13.8 3.0 3.0 15.2 0 3.5 45.9 37.7 48.5
Reference

Test 0 14.6 3.0 3.0 36.4 0 3.5 47.0 37.6 41.1

Train 0 34.9 2.5 2.5 17.5 0 3.7 22.5 17.6 35.7
Science

Test 0 30.6 2.5 2.5 22.5 0.1 3.5 24.1 19.0 43.4

Train 0 21.0 2.6 2.6 23.1 0 3.3 40.8 32.2 28.9
Social

Test 0 22.8 2.6 2.6 25.6 0 3.3 43.6 34.0 31.4

Train 0 41.9 3.7 3.7 48.1 0 6.3 49.1 26.7 49.9
Society

Test 0 40.0 3.7 3.7 37.0 0 6.2 50.2 28.7 39.9

MLE: #Multi-Label Examples (Examples with #labels > 1)
ZLE: #Zero-Label Examples (Example with no/zero label)

Skew: Proportion of most frequent label set
Outlier: Feature having std. deviation ±1.5 (3) from mean



In Figure 5.4, %Skew (grey) line shows similar behavior to that of %Ex/Label

(orange) line. That is, for less skew, %Ex/label is also less and vice-versa.

Figure 5.5: Skew vs Unique

Figure 5.6: Skew vs Unique for Yahoo datasets

For datasets having comparatively larger skew and less unique label sets, proposed

algorithms performed very well. For ex. Image, Scene, Business, Health and Social (Figure

5.6).

From Figure 5.7, it is observed that though datasets have 3 to 101 labels, almost

all datasets have examples related to very less number of labels. Datasets in Figure 5.7

have a size of label space varying from 1 to 14 per example.
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Figure 5.7: Percentage cardinality of labels (Number of Labels per Example) for datasets

5.2 Performance Parameters for Experimental Setup

Multi-label evaluation can be performed using different assessment parameters, as

mentioned in section 2.5 of Chapter 2. Parameters that are used in this work are as follows.

Let ALi and PLi denote a set of actual labels of instance xi and a set of predicted

labels by g(.) for the same. Let E and S be the number of instances in a dataset to be

evaluated and labels in the predefined label set, respectively.

5.2.1 Example-based measures

Performance measures that compute data from individual instances and then make

an average of data obtained are termed as example-based measures [25] [31].

5.2.1.1 Hamming loss

It counts the number of times actual labels of an instance do not match predicted

labels.

HL(gc) =
1

|E|

|E|∑
i=1

|V (PLiΘALi|)
|S|

(5.1)

where Θ denotes symmetric difference. V (.) = 0 if all predicted labels PLi are the same as

ALi for an instance i, else it is 1. HL(gc) = 0 means all instances are correctly classified.

Smaller HL(gc) indicates better performance.
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5.2.1.2 Subset Accuracy

It finds average from the exact match of the instance-wise actual label set and

corresponding predicted label set for all the instances [14-20].

SA(gc) =
1

|E|

|E|∑
i=1

V (PLi = ALi) (5.2)

where V (.) = 1 if ALi and PLi of instance I match, else V (.) = 0.

5.2.1.3 Accuracy

Acc(gc) =
1

|E|

|E|∑
i=1

|PLi
⋂
ALi|

|PLi
⋃
ALi|

(5.3)

5.2.1.4 Example-based F-Measure

F-Measure is used for evaluation instead of using precision and recall because it

provides a balanced representation of both precision and recall measures.

F1(gc) =
1

|E|

|E|∑
i=1

2× |PLi
⋂
ALi|

|ALi|+ |PLi|
(5.4)

Four ranking measures [19] given below, use a ranking function µ(.). Let µ(l, i) denotes

relevance of label l with an instance i. Assume that smaller µ(l, i) shows the higher relevance

of l for i.

5.2.1.5 Ranking loss

It computes whether a relevant label is ranked below a particular irrelevant label

[25].

RL(gr) =
1

|E|

|E|∑
i=1

1

|ALi|.|ALi|
{(yr, yir)|µ(yr, xi) ≥ µ(yir, xi)}| (5.5)

Here ALi denotes complement of a set of relevant labels of an instance i. Elements yr and

yir are members of sets ALi and ALi respectively. RL(gr) = 0 indicates all relevant labels
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are ranked above irrelevant labels for all instances. Smaller RL(gr) is desired for better

performance.

5.2.1.6 Coverage

It observes the list of predicted labels to find a number of steps for inclusion

of all relevant labels of each instance and computes average over all the instances. The

assumption is that the most relevant label appears at the start of the list. Smaller CG(gr)

indicates excellent performance.

CG(gr) =
1

|E|

|E|∑
i=1

maxyr∈ALiµ(yr, xi)− 1 (5.6)

5.2.1.7 Average precision

It determines an average value from all relevant labels ranked higher than a par-

ticular relevant label. More AP (gr) indicates better performance.

AP (gr) =
1

|E|

|E|∑
i=1

1

|ALi|
∑

yr1∈ALi

|{yr2 ∈ ALi|µ(yr2, xi) ≤ µ(yr1, xi)}|
µ(yr1, xi)

(5.7)

Both yr1 and yr2 labels are relevant.

5.2.1.8 One-error

It determines the number of times an irrelevant label is predicted with the top rank

(measures how many times a predicted label at the top rank is not in the list of relevant

labels of an instance). An optimal value for OE(gr) is zero. Smaller OE(gr), better the

performance [15]-[21].

OE(gr) =
1

|E|

|E|∑
i=1

argminy∈Sµ(y, xi) /∈ ALi (5.8)

V (.) returns 0 in case of false condition, else it returns 1.
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5.2.2 Label-based measures

Measures that calculate average performance from that of individual labels are

termed as label-based measures. These are binary metrics based on a count of true positives

(TP), true negatives (TN), false positives (FP) and false negatives (FN) [15]-[21].

5.2.2.1 Macro-averaged F1 (Macro-F1)

Macro-averaging gives equal importance to all the labels. In other words, it finds

an average across all the labels [3].

MaF1 =
1

|S|

|S|∑
c=1

2× TPc
2× TPc + FPc + FNc

(5.9)

5.2.2.2 Micro-averaged F1 (Micro-F1)

Micro-averaging gives equal importance to all the instances. It finds average across

all the example/label pairs [3].

MiF1 =
2×

∑|S|
c=1 TPc

2×
∑|S|

c=1 TPc +
∑|S|

c=1 FPc +
∑|S|

c=1 FNc

(5.10)

Both macro and micro F1 are used in this work for evaluation. They are influenced by rare

and frequent labels, respectively [3].

The macro-F measure tends to support rare labels, whereas the micro-F tends

to smooth out their effect on total performance, hence being more influenced by frequent

labels [3] [66].

5.3 Experimental Setup

As stated in chapter 4, feature similarity and label dissimilarity is the most crucial

part of the proposed algorithms. According to distance metrics used to measure feature

similarities and label dissimilarities, the performance of proposed algorithms is observed

for different distance metrics. Distance metrics used for feature similarity computation are:
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� Euclidean distance

� Manhattan distance

� Minkowski distance

Distance metrics used for label dissimilarity computation are:

� Hamming distance

� Jaccard distance

� SimIC distance

For experimental evaluation, the following performance metrics are used to mea-

sure the efficiency of proposed algorithms:

� Example-based: Hamming loss, ranking loss, one error, coverage, average precision,

F1 measure, accuracy, subset accuracy

� Label-based: Macro-F1 and Micro-F1

The set of experiments carried out are divided into thirteen categories according

to datasets and performance metrics used. The details of various experimental setups are

as follows.

Set 1 Performance of MLFLD algorithm with cross-validation using

Hamming distance for label dissimilarity

1.1 Evaluation of MLFLD using 5 datasets and 10 measures using Euclidean distance for

feature similarity and Hamming distance for label dissimilarity

1.2 Evaluation of MLFLD using 5 datasets and 10 measures using Manhattan distance for

feature similarity and Hamming distance for label dissimilarity

1.3 Evaluation of MLFLD using 5 datasets and 10 measures using Minkowski distance for

feature similarity and Hamming distance for label dissimilarity

1.4 Evaluation of 7 competing algorithms using 5 datasets and 10 measures

The number of experiments conducted in set 1 is 15 (3 distance measures X 5

datasets) + 35 (7 algorithms X 5 Datasets) = 50.
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Set 2 Performance of MLFLD-MAXP algorithm with cross-validation

using Hamming distance for label dissimilarity

2.1 Evaluation of MLFLD-MAXP using 5 datasets and 10 measures using Euclidean dis-

tance for feature similarity and Hamming distance for label dissimilarity

2.2 Evaluation of MLFLD-MAXP using 5 datasets and 10 measures using Manhattan dis-

tance for feature similarity and Hamming distance for label dissimilarity

2.3 Evaluation of MLFLD-MAXP using 5 datasets and 10 measures using Minkowski dis-

tance for feature similarity and Hamming distance for label dissimilarity

The number of experiments conducted in set 2 is 15 (3 distance measures X 5

datasets).

Set 3 Performance of MLFLD algorithm with train-test splits of datasets

using Hamming distance for label dissimilarity

3.1 Evaluation of MLFLD using 13 datasets and 10 measures using Euclidean distance for

feature similarity and Hamming distance for label dissimilarity

3.2 Evaluation of MLFLD using 13 datasets and 10 measures using Manhattan distance for

feature similarity and Hamming distance for label dissimilarity

3.3 Evaluation of MLFLD using 13 datasets and 10 measures using Minkowski distance for

feature similarity and Hamming distance for label dissimilarity

3.4 Evaluation of 7 competing algorithms using 13 datasets and 10 measures

The number of experiments conducted in set 3 is 39 (3 distance measures X 13

datasets) + 91 (7 algorithms X 13 Datasets) = 130.

Set 4 Performance of MLFLD-MAXP algorithm with train-test splits

of datasets using Hamming distance for label dissimilarity

4.1 Evaluation of MLFLD-MAXP using 13 datasets and 10 measures using Euclidean dis-

tance for feature similarity and Hamming distance for label dissimilarity

4.2 Evaluation of MLFLD-MAXP using 13 datasets and 10 measures using Manhattan dis-

tance for feature similarity and Hamming distance for label dissimilarity

4.3 Evaluation of MLFLD-MAXP using 13 datasets and 10 measures using Minkowski dis-

tance for feature similarity and Hamming distance for label dissimilarity

The number of experiments conducted in set 3 is 39 (3 distance measures X 13

datasets).
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Set 5 Performance of MLFLD and MLFLD-MAXP algorithms with

cross-validation after outlier removal from datasets

5.1 Evaluation of MLFLD using 5 datasets and 10 measures using Euclidean distance for

feature similarity and Hamming distance for label dissimilarity

5.2 Evaluation of MLFLD-MAXP using 5 datasets and 10 measures using Euclidean dis-

tance for feature similarity and Hamming distance for label dissimilarity

5.3 Evaluation of MLkNN using 5 datasets and 10 measures using Euclidean distance for

feature similarity and Hamming distance for label dissimilarity

The number of experiments conducted in set 5 is 15 (3 algorithms X 5 datasets).

Set 6 Performance of MLFLD and MLFLD-MAXP algorithms with

train-test splits of datasets after outlier removal from datasets

6.1 Evaluation of MLFLD using 13 datasets and 10 measures using Euclidean distance for

feature similarity and Hamming distance for label dissimilarity

6.2 Evaluation of MLFLD-MAXP using 13 datasets and 10 measures using Euclidean dis-

tance for feature similarity and Hamming distance for label dissimilarity

6.3 Evaluation of MLkNN using 13 datasets and 10 measures using Euclidean distance for

feature similarity and Hamming distance for label dissimilarity

The number of experiments conducted in set 6 is 39 (3 algorithms X 13 datasets).

Set 7 Performance of MLFLD for large datasets

7.1 Evaluation of MLFLD using 2 datasets and 10 measures using Euclidean distance for

feature similarity and Hamming distance for label dissimilarity

7.2 Evaluation of MLFLD using 2 datasets and 10 measures using Manhattan distance for

feature similarity and Hamming distance for label dissimilarity

7.3 Evaluation of MLFLD using 2 datasets and 10 measures using Minkowski distance for

feature similarity and Hamming distance for label dissimilarity

7.4 Evaluation of 7 competing algorithms using 2 datasets and 10 measures

The number of experiments conducted in set 7 is 6 (3 distance measures X 2

datasets) + 14 (7 algorithms X 2 Datasets) = 20.

Set 8 Performance of MLFLD-MAXP for large datasets

8.1 Evaluation of MLFLD-MAXP using 2 datasets and 10 measures using Euclidean dis-

tance for feature similarity and Hamming distance for label dissimilarity
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8.2 Evaluation of MLFLD-MAXP using 2 datasets and 10 measures using Manhattan dis-

tance for feature similarity and Hamming distance for label dissimilarity

8.3 Evaluation of MLFLD-MAXP using 2 datasets and 10 measures using Minkowski dis-

tance for feature similarity and Hamming distance for label dissimilarity

The number of experiments conducted in set 8 is 6 (3 distance measures X 2

datasets).

Set 9 Performance of MLFLD algorithm with train-test splits of datasets

using Jaccard distance for label dissimilarity

9.1 Evaluation of MLFLD using 13 datasets and 10 measures using Euclidean distance for

feature similarity and Jaccard distance for label dissimilarity

9.2 Evaluation of MLFLD using 13 datasets and 10 measures using Manhattan distance for

feature similarity and Jaccard distance for label dissimilarity

9.3 Evaluation of MLFLD using 13 datasets and 10 measures using Minkowski distance for

feature similarity and Jaccard distance for label dissimilarity

The number of experiments conducted in set 9 is 39 (3 distance measures X 13

datasets).

Set 10 Performance of MLFLD-MAXP algorithm with train-test splits

of datasets using Jaccard distance for label dissimilarity

10.1 Evaluation of MLFLD-MAXP using 13 datasets and 10 measures using Euclidean

distance for feature similarity and Jaccard distance for label dissimilarity

10.2 Evaluation of MLFLD-MAXP using 13 datasets and 10 measures using Manhattan

distance for feature similarity and Jaccard distance for label dissimilarity

10.3 Evaluation of MLFLD-MAXP using 13 datasets and 10 measures using Minkowski

distance for feature similarity and Jaccard distance for label dissimilarity

The number of experiments conducted in set 10 is 39 (3 distance measures X 13

datasets).

Set 11 Performance of MLFLD algorithm with cross-validation using

Jaccard distance for label dissimilarity

11.1 Evaluation of MLFLD using 5 datasets and 10 measures using Euclidean distance for

feature similarity and Jaccard distance for label dissimilarity

11.2 Evaluation of MLFLD using 5 datasets and 10 measures using Manhattan distance for
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feature similarity and Jaccard distance for label dissimilarity

11.3 Evaluation of MLFLD using 5 datasets and 10 measures using Minkowski distance for

feature similarity and Jaccard distance for label dissimilarity

The number of experiments conducted in set 11 is 15 (3 distance measures X 5

datasets).

Set 12 Performance of MLFLD-MAXP algorithm with cross-validation

using Jaccard distance for label dissimilarity

12.1 Evaluation of MLFLD-MAXP using 5 datasets and 10 measures using Euclidean dis-

tance for feature similarity and Jaccard distance for label dissimilarity

12.2 Evaluation of MLFLD-MAXP using 5 datasets and 10 measures using Manhattan dis-

tance for feature similarity and Jaccard distance for label dissimilarity

12.3 Evaluation of MLFLD-MAXP using 5 datasets and 10 measures using Minkowski dis-

tance for feature similarity and Jaccard distance for label dissimilarity

The number of experiments conducted in set 12 is 15 (3 distance measures X 5

datasets).

Set 13 Performance of MLFLD algorithm with train-test splits of datasets

using SimIC distance for label dissimilarity

13.1 Evaluation of MLFLD using 13 datasets and 10 measures using Euclidean distance for

feature similarity and SimIC distance for label dissimilarity

13.2 Evaluation of MLFLD using 13 datasets and 10 measures using Manhattan distance

for feature similarity and SimIC distance for label dissimilarity

13.3 Evaluation of MLFLD using 13 datasets and 10 measures using Minkowski distance

for feature similarity and SimIC distance for label dissimilarity

The number of experiments conducted in set 13 is 39 (3 distance measures X 13

datasets).

Set 14 Performance of MLFLD-MAXP algorithm with train-test splits

of datasets using SimIC distance for label dissimilarity

14.1 Evaluation of MLFLD-MAXP using 13 datasets and 10 measures using Euclidean

distance for feature similarity and SimIC distance for label dissimilarity

14.2 Evaluation of MLFLD-MAXP using 13 datasets and 10 measures using Manhattan

distance for feature similarity and SimIC distance for label dissimilarity
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14.3 Evaluation of MLFLD-MAXP using 13 datasets and 10 measures using Minkowski

distance for feature similarity and SimIC distance for label dissimilarity

The number of experiments conducted in set 14 is 39 (3 distance measures X 13

datasets).

Set 15 Performance of MLFLD algorithm with cross-validation using

SimIC distance for label dissimilarity

15.1 Evaluation of MLFLD using 5 datasets and 10 measures using Euclidean distance for

feature similarity and SimIC distance for label dissimilarity

15.2 Evaluation of MLFLD using 5 datasets and 10 measures using Manhattan distance for

feature similarity and SimIC distance for label dissimilarity

15.3 Evaluation of MLFLD using 5 datasets and 10 measures using Minkowski distance for

feature similarity and SimIC distance for label dissimilarity

The number of experiments conducted in set 15 is 15 (3 distance measures X 5

datasets).

Set 16 Performance of MLFLD-MAXP algorithm with cross-validation

using SimIC distance for label dissimilarity

16.1 Evaluation of MLFLD-MAXP using 5 datasets and 10 measures using Euclidean dis-

tance for feature similarity and SimIC distance for label dissimilarity

16.2 Evaluation of MLFLD-MAXP using 5 datasets and 10 measures using Manhattan dis-

tance for feature similarity and SimIC distance for label dissimilarity

16.3 Evaluation of MLFLD-MAXP using 5 datasets and 10 measures using Minkowski dis-

tance for feature similarity and SimIC distance for label dissimilarity

The number of experiments conducted in set 16 is 15 (3 distance measures X 5

datasets).

Set 17 Performance of MLFLD and MLFLD-MAXP for feature selec-

tion

17.1 Performing attribute selection on 5 datasets

17.2 Evaluation of MLFLD using 5 datasets and 10 measures following attribute selection

17.3 Evaluation of MLFLD-MAXP using 5 datasets and 10 measures following attribute

selection
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The number of experiments conducted in set 17 is 5 (attribute selection on 5

datasets) + 10 (2 algorithms X 5 datasets) = 15.

Set 18 Performance of MLFLD and MLFLD-MAXP for instance selec-

tion

18.1 Performing instance selection with a replacement for 60% sample size on 5 datasets

18.2 Performing instance selection with a replacement for 70% sample size on 5 datasets

18.3 Performing instance selection with a replacement for 80% sample size on 5 datasets

18.4 Evaluation of MLFLD on 5 datasets with 60% sample size

18.5 Evaluation of MLFLD on 5 datasets with 70% sample size

18.6 Evaluation of MLFLD on 5 datasets with 80% sample size

18.7 Evaluation of MLFLD-MAXP on 5 datasets with 60% sample size

18.8 Evaluation of MLFLD-MAXP on 5 datasets with 70% sample size

18.9 Evaluation of MLFLD-MAXP on 5 datasets with 80% sample size

The number of experiments conducted in set 18 is 15 (instance selection on 5

datasets X 3 sample sizes) + 30 (2 algorithms X 5 datasets X 3 sample sizes) = 45.

Set 19 Performance of MLFLD and MLFLD-MAXP for a feature and

instance selection

19.1 Instance selection with a replacement for 60% sample size following attribute selection

on 5 datasets

19.2 Instance selection with a replacement for 70% sample size following attribute selection

on 5 datasets

19.3 Instance selection with a replacement for 80% sample size following attribute selection

on 5 datasets

19.4 Evaluation of MLFLD on 5 datasets with 60% sample size

19.5 Evaluation of MLFLD on 5 datasets with 70% sample size

19.6 Evaluation of MLFLD on 5 datasets with 80% sample size

19.7 Evaluation of MLFLD-MAXP on 5 datasets with 60% sample size

19.8 Evaluation of MLFLD-MAXP on 5 datasets with 70% sample size

19.9 Evaluation of MLFLD-MAXP on 5 datasets with 80% sample size

The number of experiments conducted in set 19 is 15 (instance selection on 5

datasets X 3 sample sizes) + 30 (2 algorithms X 5 datasets X 3 sample sizes) = 45.
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Set 20 Performance of MLFLD for k variation

20.1 Evaluation of MLFLD for k ranging from 5 to 15 on Emotions dataset for 10 perfor-

mance measures

20.2 Evaluation of MLFLD for k ranging from 5 to 15 on Image dataset for 10 performance

measures

20.3 Evaluation of MLFLD for k ranging from 5 to 15 on Scene dataset for 10 performance

measures

20.4 Evaluation of MLFLD for k ranging from 5 to 15 on Yeast dataset for 10 performance

measures

The number of experiments conducted in set 20 is 44 (4 datasets X 11 values of

k).

Set 21 Performance of MLFLD for threshold variation

21.1 Evaluation of MLFLD for 9 values of threshold on Emotions dataset

21.2 Evaluation of MLFLD for 9 values of threshold on an Image dataset

21.3 Evaluation of MLFLD for 9 values of threshold on Scene dataset

21.4 Evaluation of MLFLD for 9 values of threshold on Yeast dataset

The number of experiments conducted in set 21 is 36 (4 datasets X 9 values of a

threshold).

Set 22 Performance of MLFLD for smoothing factor variation

22.1 Evaluation of MLFLD for 4 values of smoothing factor on Emotions dataset

22.2 Evaluation of MLFLD for 4 values of smoothing factor on an Image dataset

22.3 Evaluation of MLFLD for 4 values of smoothing factor on Scene dataset

22.4 Evaluation of MLFLD for 4 values of smoothing factor on Yeast dataset

The number of experiments conducted in set 22 is 16 (4 datasets X 4 values of

smoothing factor).

5.4 Experimental Process

All experiments from Set 1 to Set 22 mentioned earlier in this chapter are con-

ducted as detailed below.
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1. All the experiments in Set 1 are carried using MLFLD algorithm with cross-validation.

2. All the experiments in Set 2 are performed similarly as in Set 1 except algorithm that

is MLFLD-MAXP.

3. Set 3 and Set 4 are similar to Set 1 and Set 2. The only change is the use of train-test

splits of datasets instead of cross-validation.

4. Sets 5-6 are implemented using both proposed and one competing algorithm datasets

free from outliers.

5. Sets 7-8 are similar to Sets 3-4 except datasets. They are run on large datasets.

6. Sets 9-12 and Sets 13-16 repeat Sets 1-4 for Jaccard and SimIC distance respectively

instead of Hamming.

7. Sets 17, 18, 19 are executed out experiments to observe the performance along with

feature selection, instance selection and both feature and instance selection respec-

tively.

8. Set 1 is repeated independently for different values of k, threshold and smoothing

factor resulting in Sets 20, 21 and 22, respectively.

For experimentation, java program is written and tested on Intel(R) Core(TM)

i5-6200U CPU @2.30 GHz with 8GB RAM. Libraries supported by Mulan, MEKA and

WEKA are imported while implementing the algorithm [10] [17] [18] [19] [20].

Description of empirical evaluation for all the sets is presented in Chapter 6.

Details of experiments are shown in Table 5.5.
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Table 5.5: Details of experiments

Set
No.

Details of Experiment #Expts

1
Performance of MLFLD algorithm with cross-validation
using Hamming distance for label dissimilarity

50

2
Performance of MLFLD-MAXP algorithm with cross-validation
using Hamming distance for label dissimilarity

15

3
Performance of MLFLD algorithm with train-test splits of
datasets using Hamming distance for label dissimilarity

130

4
Performance of MLFLD-MAXP algorithm with train-test
splits of datasets using Hamming distance for label dissimilarity

39

5
Performance of MLFLD and MLFLD-MAXP algorithms with
cross-validation after outlier removal from datasets

15

6
Performance of MLFLD and MLFLD-MAXP algorithms with
train-test splits of datasets after outlier removal from datasets

39

7 Performance of MLFLD for large datasets 20

8 Performance of MLFLD-MAXP for large datasets 6

9
Performance of MLFLD algorithm with train-test splits of
datasets using Jaccard distance for label dissimilarity

39

10
Performance of MLFLD-MAXP algorithm with train-test splits
of datasets using Jaccard distance for label dissimilarity

39

11
Performance of MLFLD algorithm with cross-validation using
Jaccard distance for label dissimilarity

15

12
Performance of MLFLD-MAXP algorithm with cross-validation
using Jaccard distance for label dissimilarity

15

13
Performance of MLFLD algorithm with train-test splits of datasets
using SimIC distance for label dissimilarity

39

14
Performance of MLFLD-MAXP algorithm with train-test splits of
datasets using SimIC distance for label dissimilarity

39

15
Performance of MLFLD algorithm with cross-validation using
SimIC distance for label dissimilarity

15

16
Performance of MLFLD-MAXP algorithm with cross-validation
using SimIC distance for label dissimilarity

15

17 Performance of MLFLD and MLFLD-MAXP for feature selection 15

18 Performance of MLFLD and MLFLD-MAXP for instance selection 45

19
Performance of MLFLD and MLFLD-MAXP for a feature
and instance selection

45

20 Performance of MLFLD for k variation 44

21 Performance of MLFLD for threshold variation 36

22 Performance of MLFLD for smoothing factor variation 16

Total no. of experiments 695
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Chapter 6

Experimentation and Results

Chapter 4 presented a general methodology used for multi-label classification. Pro-

posed algorithms to perform multi-label classification by exploring feature similarities and

label dissimilarities (MLFLD) and its extension MLFLD-MAXP (MLFLD using maximum

probability) are presented in chapter 4. Algorithms MLFS, MLIS, and MLFSIS to describe

how feature and/or instance selection can be accomplished before multi-label classification

are also presented in the previous chapter.

In this chapter, the performance of algorithms described in chapter 4 is analyzed

with several experiments carried out, as described in chapter 5. Section 6.1 describes the

different parameters and values used by algorithms. Both algorithms are first executed with

Euclidean and Hamming distance for feature similarity and label dissimilarity. Distance

variation for feature similarity is also carried out. Euclidean, Manhattan, and Minkowski

[48] distance measures are used for feature similarity. The setup is repeated once with cross-

validation and then with train-test splits of datasets as described in sections 6.2 and 6.3,

respectively. All experiments are again executed with Jaccard and SimIC distance for label

dissimilarity, as described in section 6.6. All the tests involved are completed using five

datasets for cross-validation, thirteen datasets for train-test splits, and two large datasets

also. Datasets are described in chapter 5. Datasets are also examined for outlier data.

Outliers are removed from datasets, and on these datasets, experimentation is carried out

using MLFLD and MLFLD-MAXP with Euclidean and Hamming distance as described in

section 6.4. Evaluation for large datasets is described in section 6.5. Effect of applying
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algorithms MLFS, MLIS, and MLFSIS on five datasets, followed by MLFLD and MLFLD-

MAXP, is explained in section 6.7 to 6.9. For all these experiments, an evaluation is carried

out using eight example-based measures, namely hamming loss, ranking loss, coverage, one

error, average precision, subset accuracy and accuracy, F1 measure, and two label-based

macro-F1 and micro-F1 measures described in chapter 5. The performance of MLFLD

for variation of parameter k, threshold, and smoothing factor is shown in the last three

sections. Standard deviations are minimal, hence not shown here.

For performance comparison, MLkNN is found as the primary contestant. Hence

for MLkNN, published results from [12] are used for Image and Yeast datasets for cross-

validation experiments and train-test splits of Yahoo datasets. The remaining results are

taken from Mulan experiments [74]. In all sections, Tables 1-10 show the performance

of ten parameters. Top row in the table shows algorithms used for evaluation. The first

column shows datasets used. At the end of each section, the summary table shows the

algorithm-wise average of each parameter obtained over all datasets. The summary table

contains performance parameters and names of algorithms in the first column and top row,

respectively.

Metrics used have different desired values. Also, different metrics may affect

other metrics. Hence it is not possible to improve all the metrics simultaneously. Therefore

for comparison, an algorithm-wise average of each metric is obtained over all datasets.

Then metric-wise, each algorithm is given rank with the best performing algorithm getting

position 1. The second-best performing algorithm is getting position 2, and so on. All

algorithms showing the same performance for a particular metric will get the same rank

for that metric. When ranks of all algorithms are available for ten parameters, then the

average rank of each algorithm is computed. The algorithm-wise count of rank one is

treated as #Wins (number of wins) for that algorithm. Algorithm having the smallest

average rank and maximum #Wins is considered as the best performer for a given setup

of experimentation.

6.1 Values for various input parameters used for experiments

The state-of-the-art multi-label classifiers that include BR, LP, CC, RAkEL,

BRkNN, BPMLL, and MLkNN are available in Mulan [74]. Parameters used by these

102



Table 6.1: Values for various input parameters used by competing algorithms

Sr. No. Algorithm Base classifier Other parameters

1 BR Decision tree (J48) -

2 LP Decision tree (J48) -

3 CC Decision tree (J48) -

4 RAkEL LP with J48
k = 3, m = 6
Threshold = 0.5

5 BRkNN - k = 10

6 BPMLL - Default

7 MLkNN - k=10, Smoothing factor=1

Table 6.2: Values for various input parameters used for MLFLD and MLFLD-MAXP

Sr. No. Parameter Value Description

1 k 10 Number of neighbors

2 P 1 Smoothing factor

3 Th 0.5 Threshold

4 Fdistance Euc/Man/Min
Distance metric used to compute
feature similarity (Euclidean /
Manhattan / Minkowski)

5 Ldistance H/J/S
Distance metric used to compute
label dissimilarity (Hamming /
Jaccard / SimIC)

competing algorithms and MLFLD and MLFLD-MAXP are shown in Table 6.1 and Table

6.2, respectively.

All experiments are carried on Intel(R) Core(TM) i5-6200U CPU @2.30 GHz with

8GB RAM. Libraries in Mulan, as well as MEKA and WEKA [73] [74] [75] are used with

Java.

6.2 Performance of proposed algorithms with cross-validation

using Hamming distance for label dissimilarity

This section presents an evaluation of proposed algorithms with cross-validation.

Here Hamming distance is used for label dissimilarity. Symbols ↓ and ↑ used throughout the

chapter denote smaller and higher values desired for the corresponding metrics, respectively.

Desired hamming and ranking loss, coverage, and one error are lower whereas expected avg

precision, subset accuracy, accuracy, example-based F measure (hereafter used as Ex-F1),

macro and micro F1 are higher.
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Note that among competing algorithms, MLkNN has performed better among

all. Hence the performance of proposed algorithms is mainly compared with MLkNN, and

percentage improvement over MLkNN is mentioned.

6.2.1 Performance of MLFLD algorithm with cross-validation (CV) using

Hamming distance

Evaluation of MLFLD is carried out using Euclidian and Hamming distance for

feature similarity and label dissimilarity, respectively. Tables 6.3 to 6.12 show the assess-

ment of ten parameters and summarized in Table 6.13.

Table 6.3: Performance of MLFLD (CV) for Hamming loss (↓) using Hamming distance

Dataset BR LP CC RAkEL BRkNN BPMLL MLkNN MLFLD

Emotions 0.2425 0.2704 0.2534 0.2412 0.1922 0.2104 0.1959 0.1938

Image 0.2277 0.2310 0.2266 0.1958 0.1729 0.5794 0.1690 0.1631

Scene 0.1316 0.1476 0.1379 0.1188 0.0924 0.2507 0.0861 0.0797

Yeast 0.2469 0.2752 0.2675 0.2487 0.1952 0.2247 0.1940 0.1981

CAL500 0.1608 0.2000 0.1760 0.1539 0.1425 0.2501 0.1388 0.1394

Average 0.2019 0.2248 0.2123 0.1917 0.1590 0.3031 0.1568 0.1548

Rank 5 7 6 4 3 8 2 1

Table 6.4: Performance of MLFLD (CV) for Ranking loss (↓) using Hamming distance

Dataset BR LP CC RAkEL BRkNN BPMLL MLkNN MLFLD

Emotions 0.3042 0.3407 0.2964 0.2228 0.1593 0.1595 0.1594 0.1483

Image 0.3051 0.3062 0.2967 0.2045 0.1805 0.4450 0.1680 0.1570

Scene 0.2391 0.2216 0.2323 0.1315 0.0936 0.1645 0.0775 0.0682

Yeast 0.3110 0.3966 0.3227 0.3559 0.1778 0.1845 0.1670 0.1689

CAL500 0.3023 0.6508 0.3679 0.6111 0.2310 0.1773 0.1828 0.1835

Average 0.2923 0.3832 0.3032 0.3052 0.1684 0.2262 0.1509 0.1452

Rank 5 8 6 7 3 4 2 1
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Table 6.5: Performance of MLFLD (CV) for One Error (↓) using Hamming distance

Dataset BR LP CC RAkEL BRkNN BPMLL MLkNN MLFLD

Emotions 0.3948 0.4267 0.3929 0.3373 0.2597 0.2900 0.2699 0.2492

Image 0.4730 0.4645 0.4360 0.3440 0.3300 0.6855 0.3000 0.2916

Scene 0.4117 0.4067 0.3722 0.3079 0.2655 0.5393 0.2256 0.2050

Yeast 0.4013 0.5123 0.3554 0.2975 0.2309 0.2441 0.2300 0.2378

CAL500 0.7312 0.9880 0.6975 0.7669 0.1893 0.1376 0.1176 0.1160

Average 0.4824 0.5596 0.4508 0.4107 0.2551 0.3793 0.2286 0.2199

Rank 7 8 6 5 3 4 2 1

Table 6.6: Performance of MLFLD (CV) for Coverage (↓) using Hamming distance

Dataset BR LP CC RAkEL BRkNN BPMLL MLkNN MLFLD

Emotions 2.5896 2.7083 2.5206 2.1349 1.7831 1.7343 1.7764 1.7102

Image 1.4885 1.4855 1.4570 1.0835 0.9845 2.0025 0.9390 0.8964

Scene 1.2958 1.2085 1.2671 0.7478 0.5551 0.9032 0.4753 0.4258

Yeast 9.2345 9.3515 8.8229 10.0333 6.5245 6.5208 6.2750 6.2905

CAL500 169.50 170.85 170.15 170.97 150.74 128.72 130.56 130.52

Average 36.822 37.122 36.843 36.994 32.119 27.977 28.005 27.969

Rank 5 8 6 7 4 2 3 1

Table 6.7: Performance of MLFLD (CV) for Average Precision (↑) using Hamming
distance

Dataset BR LP CC RAkEL BRkNN BPMLL MLkNN MLFLD

Emotions 0.6938 0.6707 0.6996 0.7519 0.8060 0.8026 0.8034 0.8183

Image 0.6778 0.6786 0.6960 0.7709 0.7867 0.5378 0.8030 0.8105

Scene 0.7148 0.7222 0.7336 0.8061 0.8412 0.6929 0.8652 0.8785

Yeast 0.6203 0.5740 0.6310 0.6190 0.7599 0.7477 0.7650 0.7648

CAL500 0.3548 0.1171 0.3156 0.1391 0.4589 0.5081 0.4942 0.4918

Average 0.6123 0.5525 0.6152 0.6174 0.7305 0.6578 0.7462 0.7528

Rank 7 8 6 5 3 4 2 1

105



Table 6.8: Performance of MLFLD (CV) for Accuracy (↑) using Hamming distance

Dataset BR LP CC RAkEL BRkNN BPMLL MLkNN MLFLD

Emotions 0.4549 0.4490 0.4739 0.4871 0.5186 0.5573 0.5340 0.5483

Image 0.4417 0.4902 0.5046 0.5275 0.4643 0.2098 0.4937 0.5588

Scene 0.5461 0.5791 0.6049 0.6034 0.6204 0.3780 0.6635 0.7083

Yeast 0.4376 0.4162 0.4287 0.3844 0.5002 0.5197 0.5162 0.5116

CAL500 0.2085 0.2036 0.2293 0.0243 0.1856 0.2969 0.1972 0.2023

Average 0.4178 0.4276 0.4483 0.4053 0.4578 0.3923 0.4809 0.5059

Rank 6 5 4 7 3 8 2 1

Table 6.9: Performance of MLFLD (CV) for Subset Accuracy (↑) using Hamming dis-
tance

Dataset BR LP CC RAkEL BRkNN BPMLL MLkNN MLFLD

Emotions 0.1956 0.2092 0.2329 0.2057 0.2917 0.2767 0.2934 0.3051

Image 0.2885 0.3755 0.3880 0.3915 0.4025 0.0210 0.4090 0.4632

Scene 0.4449 0.5351 0.5521 0.5239 0.5974 0.0694 0.6248 0.6629

Yeast 0.0674 0.1324 0.1539 0.0385 0.1982 0.1403 0.1874 0.2046

CAL500 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Average 0.1993 0.2504 0.2654 0.2319 0.2980 0.1015 0.3029 0.3272

Rank 7 5 4 6 3 8 2 1

Table 6.10: Performance of MLFLD (CV) for Ex-F1 (↑) using Hamming distance

Dataset BR LP CC RAkEL BRkNN BPMLL MLkNN MLFLD

Emotions 0.5414 0.5315 0.5542 0.5788 0.5936 0.6488 0.6141 0.6274

Image 0.4970 0.5302 0.5454 0.5750 0.4852 0.3100 0.5223 0.5916

Scene 0.5815 0.5940 0.6227 0.6303 0.6281 0.4995 0.6764 0.7235

Yeast 0.5620 0.5199 0.5288 0.5112 0.5984 0.6315 0.6204 0.6109

CAL500 0.3396 0.3277 0.3623 0.0461 0.3059 0.4486 0.3240 0.3311

Average 0.5043 0.5007 0.5227 0.4683 0.5222 0.5077 0.5514 0.5769

Rank 6 7 3 8 4 5 2 1
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Table 6.11: Performance of MLFLD (CV) for Macro-F1 (↑) using Hamming distance

Dataset BR LP CC RAkEL BRkNN BPMLL MLkNN MLFLD

Emotions 0.5736 0.5520 0.5798 0.6228 0.6282 0.6630 0.6226 0.6584

Image 0.5406 0.5319 0.5447 0.5941 0.5492 0.3254 0.5815 0.6287

Scene 0.6423 0.5992 0.6318 0.6709 0.6996 0.5558 0.7364 0.7683

Yeast 0.3911 0.3834 0.3987 0.2732 0.3960 0.4339 0.3853 NaN

CAL500 0.2134 0.1937 0.2435 0.1233 0.1893 0.2445 0.1714 NaN

Average 0.4722 0.4520 0.4797 0.4569 0.4925 0.4445 0.4994 0.6851

Rank 5 7 4 6 3 8 2 1

*NaN: denotes Not a Number

Table 6.12: Performance of MLFLD (CV) for Micro-F1 (↑) using Hamming distance

Dataset BR LP CC RAkEL BRkNN BPMLL MLkNN MLFLD

Emotions 0.5970 0.5603 0.5908 0.6238 0.6539 0.6774 0.6610 0.6727

Image 0.5384 0.5312 0.5438 0.5933 0.5542 0.3537 0.5842 0.6259

Scene 0.6312 0.5885 0.6189 0.6627 0.7006 0.5341 0.7332 0.7617

Yeast 0.5840 0.5436 0.5507 0.5343 0.6344 0.6472 0.6471 0.6426

CAL500 0.3421 0.3322 0.3664 0.0464 0.3085 0.4566 0.3209 0.3294

Average 0.5385 0.5112 0.5341 0.4921 0.5703 0.5338 0.5893 0.6065

Rank 4 7 5 8 3 6 2 1

Observations: When the performance of all algorithms is compared over the

average rank of ten metrics obtained for five datasets, MLFLD has outperformed, showing

the smallest avg rank in Table 6.13. Also, it has demonstrated 10 on 10 wins. Metric-wise

performance of MLFLD is as given below:

� MLFLD has outshined in subset accuracy for all datasets with an overall 8% improve-

ment. For CAL500, it is not able to improve but is similar to other algorithms.

� For accuracy, a total of 5% improvement is seen over that of MLkNN though only

Image and Scene are showing growth for MLFLD.
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� 4%, 6%, and 3% overall improvement are seen for Ex-F1, macro, and micro F1 respec-

tively while showing improved F measures for Image and Scene only. For Yeast and

CAL500, MLFLD is not able to measure macro F1 denoted by NaN (Not a Number).

� MLFLD has outperformed by a 1% improvement with the smallest average hamming

loss over MLkNN that has shown the second-lowest average hamming loss. However,

MLFLD has demonstrated the least misclassification for Image and Scene datasets

only.

� It has demonstrated improved ranking loss and one error for three datasets and an

overall 4% improvement over MLkNN for both metrics.

� MLFLD has shown improved coverage and avg precision for three datasets and an

overall 1% improvement over MLkNN for avg precision while coverage is similar to

that of MLkNN.

Table 6.13: Summary of MLFLD (CV) performance using Hamming distance

Metric BR LP CC RAkEL BRkNN BPMLL MLkNN MLFLD

HamLoss 0.2019 0.2248 0.2123 0.1917 0.159 0.3031 0.1568 0.1548

RankLoss 0.2923 0.3832 0.3032 0.3052 0.1684 0.2262 0.1509 0.1452

OneError 0.4824 0.5596 0.4508 0.4107 0.2551 0.3793 0.2286 0.2199

Coverage 36.822 37.122 36.843 36.994 32.119 27.977 28.005 27.969

AvgPrec 0.6123 0.5525 0.6152 0.6174 0.7305 0.6578 0.7462 0.7528

Accuracy 0.4178 0.4276 0.4483 0.4053 0.4578 0.3923 0.4809 0.5059

SubAcc 0.1993 0.2504 0.2654 0.2319 0.298 0.1015 0.3029 0.3272

Ex-F1 0.5043 0.5007 0.5227 0.4683 0.5222 0.5077 0.5514 0.5769

Macro-F1 0.4722 0.452 0.4797 0.4569 0.4925 0.4445 0.4994 0.6851

Micro-F1 0.5385 0.5112 0.5341 0.4921 0.5703 0.5338 0.5893 0.6065

Avg Rank 5.7 7.0 5.0 6.3 3.2 5.7 2.1 1.0

#Wins 0 0 0 0 0 0 0 10
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6.2.2 Performance of MLFLD-MAXP algorithm with cross-validation us-

ing Hamming distance

In this section, the evaluation of MLFLD-MAXP carried out using Euclidian and

Hamming distance for feature similarity and label dissimilarity, respectively, is presented

in Table 6.14 to 6.23. MLFLD-MAXP is denoted by MAXP in the following tables.

Table 6.14: Performance of MLFLD-MAXP (CV) for Hamming loss (↓) using Hamming
distance

Dataset BR LP CC RAkEL BRkNN BPMLL MLkNN MAXP

Emotions 0.2425 0.2704 0.2534 0.2412 0.1922 0.2104 0.1959 0.1938

Image 0.2277 0.2310 0.2266 0.1958 0.1729 0.5794 0.1690 0.1656

Scene 0.1316 0.1476 0.1379 0.1188 0.0924 0.2507 0.0861 0.0812

Yeast 0.2469 0.2752 0.2675 0.2487 0.1952 0.2247 0.1940 0.1977

CAL500 0.1608 0.2000 0.1760 0.1539 0.1425 0.2501 0.1388 0.1394

Average 0.2019 0.2248 0.2123 0.1917 0.1590 0.3031 0.1568 0.1555

Rank 5 7 6 4 3 8 2 1

MLFLD-MAXP has shown a 0.7% improvement in avg hamming loss for five

datasets though it has shown an improved hamming loss for only Image and Scene individ-

ually.

Table 6.15: Performance of MLFLD-MAXP (CV) for Ranking loss (↓) using Hamming
distance

Dataset BR LP CC RAkEL BRkNN BPMLL MLkNN MAXP

Emotions 0.3042 0.3407 0.2964 0.2228 0.1593 0.1595 0.1594 0.1483

Image 0.3051 0.3062 0.2967 0.2045 0.1805 0.4450 0.1680 0.1570

Scene 0.2391 0.2216 0.2323 0.1315 0.0936 0.1645 0.0775 0.0682

Yeast 0.3110 0.3966 0.3227 0.3559 0.1778 0.1845 0.1670 0.1689

CAL500 0.3023 0.6508 0.3679 0.6111 0.2310 0.1773 0.1828 0.1835

Average 0.2923 0.3832 0.3032 0.3052 0.1684 0.2262 0.1509 0.1452

Rank 5 8 6 7 3 4 2 1
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Table 6.16: Performance of MLFLD-MAXP (CV) for One Error (↓) using Hamming
distance

Dataset BR LP CC RAkEL BRkNN BPMLL MLkNN MAXP

Emotions 0.3948 0.4267 0.3929 0.3373 0.2597 0.2900 0.2699 0.2492

Image 0.4730 0.4645 0.4360 0.3440 0.3300 0.6855 0.3000 0.2916

Scene 0.4117 0.4067 0.3722 0.3079 0.2655 0.5393 0.2256 0.2050

Yeast 0.4013 0.5123 0.3554 0.2975 0.2309 0.2441 0.2300 0.2378

CAL500 0.7312 0.9880 0.6975 0.7669 0.1893 0.1376 0.1176 0.1160

Average 0.4824 0.5596 0.4508 0.4107 0.2551 0.3793 0.2286 0.2199

Rank 7 8 6 5 3 4 2 1

For one error, overall improvement is 3% while four datasets are showing reduced

one error performance with MLFLD-MAXP.

Table 6.17: Performance of MLFLD-MAXP (CV) for Coverage (↓) using Hamming dis-
tance

Dataset BR LP CC RAkEL BRkNN BPMLL MLkNN MAXP

Emotions 2.5896 2.7083 2.5206 2.1349 1.7831 1.7343 1.7764 1.7102

Image 1.4885 1.4855 1.4570 1.0835 0.9845 2.0025 0.9390 0.8964

Scene 1.2958 1.2085 1.2671 0.7478 0.5551 0.9032 0.4753 0.4258

Yeast 9.2345 9.3515 8.8229 10.033 6.5245 6.5208 6.2750 6.2905

CAL500 169.51 170.86 170.15 170.97 150.75 128.73 130.56 130.52

Average 36.823 37.122 36.844 36.994 32.119 27.978 28.006 27.969

Rank 5 8 6 7 4 2 3 1

Coverage for the first three datasets is improved, though improvement for coverage

is only 0.1% that is performance is almost similar for the proposed and competing algorithm.
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Table 6.18: Performance of MLFLD-MAXP (CV) for Average Precision (↑) using Ham-
ming distance

Dataset BR LP CC RAkEL BRkNN BPMLL MLkNN MAXP

Emotions 0.6938 0.6707 0.6996 0.7519 0.8060 0.8026 0.8034 0.8183

Image 0.6778 0.6786 0.6960 0.7709 0.7867 0.5378 0.8030 0.8105

Scene 0.7148 0.7222 0.7336 0.8061 0.8412 0.6929 0.8652 0.8785

Yeast 0.6203 0.5740 0.6310 0.6190 0.7599 0.7477 0.7650 0.7648

CAL500 0.3548 0.1171 0.3156 0.1391 0.4589 0.5081 0.4942 0.4918

Average 0.6123 0.5525 0.6152 0.6174 0.7305 0.6578 0.7462 0.7528

Rank 7 8 6 5 3 4 2 1

Table 6.19: Performance of MLFLD-MAXP (CV) for Accuracy (↑) using Hamming
distance

Dataset BR LP CC RAkEL BRkNN BPMLL MLkNN MAXP

Emotions 0.4549 0.4490 0.4739 0.4871 0.5186 0.5573 0.5340 0.5627

Image 0.4417 0.4902 0.5046 0.5275 0.4643 0.2098 0.4937 0.6169

Scene 0.5461 0.5791 0.6049 0.6034 0.6204 0.3780 0.6635 0.7599

Yeast 0.4376 0.4162 0.4287 0.3844 0.5002 0.5197 0.5162 0.5140

CAL500 0.2085 0.2036 0.2293 0.0243 0.1856 0.2969 0.1972 0.2023

Average 0.4178 0.4276 0.4483 0.4053 0.4578 0.3923 0.4809 0.5312

Rank 6 5 4 7 3 8 2 1

Table 6.20: Performance of MLFLD-MAXP (CV) for Subset Accuracy (↑) using Ham-
ming distance

Dataset BR LP CC RAkEL BRkNN BPMLL MLkNN MAXP

Emotions 0.1956 0.2092 0.2329 0.2057 0.2917 0.2767 0.2934 0.3136

Image 0.2885 0.3755 0.3880 0.3915 0.4025 0.0210 0.4090 0.5108

Scene 0.4449 0.5351 0.5521 0.5239 0.5974 0.0694 0.6248 0.7117

Yeast 0.0674 0.1324 0.1539 0.0385 0.1982 0.1403 0.1874 0.2046

CAL500 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Average 0.1993 0.2504 0.2654 0.2319 0.2980 0.1015 0.3029 0.3481

Rank 7 5 4 6 3 8 2 1
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Table 6.21: Performance of MLFLD-MAXP (CV) for Ex-F1 (↑) using Hamming distance

Dataset BR LP CC RAkEL BRkNN BPMLL MLkNN MAXP

Emotions 0.5414 0.5315 0.5542 0.5788 0.5936 0.6488 0.6141 0.6441

Image 0.4970 0.5302 0.5454 0.5750 0.4852 0.3100 0.5223 0.6532

Scene 0.5815 0.5940 0.6227 0.6303 0.6281 0.4995 0.6764 0.7761

Yeast 0.5620 0.5199 0.5288 0.5112 0.5984 0.6315 0.6204 0.6145

CAL500 0.3396 0.3277 0.3623 0.0461 0.3059 0.4486 0.3240 0.3311

Average 0.5043 0.5007 0.5227 0.4683 0.5222 0.5077 0.5514 0.6038

Rank 6 7 3 8 4 5 2 1

Table 6.22: Performance of MLFLD-MAXP (CV) for Macro-F1 (↑) using Hamming
distance

Dataset BR LP CC RAkEL BRkNN BPMLL MLkNN MAXP

Emotions 0.5736 0.5520 0.5798 0.6228 0.6282 0.6630 0.6226 0.6609

Image 0.5406 0.5319 0.5447 0.5941 0.5492 0.3254 0.5815 0.6482

Scene 0.6423 0.5992 0.6318 0.6709 0.6996 0.5558 0.7364 0.7795

Yeast 0.3911 0.3834 0.3987 0.2732 0.3960 0.4339 0.3853 NaN

CAL500 0.2134 0.1937 0.2435 0.1233 0.1893 0.2445 0.1714 NaN

Average 0.4722 0.4520 0.4797 0.4569 0.4925 0.4445 0.4994 0.6962

Rank 5 7 4 6 3 8 2 1

Table 6.23: Performance of MLFLD-MAXP (CV) for Micro-F1 (↑) using Hamming
distance

Dataset BR LP CC RAkEL BRkNN BPMLL MLkNN MAXP

Emotions 0.5970 0.5603 0.5908 0.6238 0.6539 0.6774 0.6610 0.6766

Image 0.5384 0.5312 0.5438 0.5933 0.5542 0.3537 0.5842 0.6449

Scene 0.6312 0.5885 0.6189 0.6627 0.7006 0.5341 0.7332 0.7706

Yeast 0.5840 0.5436 0.5507 0.5343 0.6344 0.6472 0.6471 0.6439

CAL500 0.3421 0.3322 0.3664 0.0464 0.3085 0.4566 0.3209 0.3294

Average 0.5385 0.5112 0.5341 0.4921 0.5703 0.5338 0.5893 0.6131

Rank 4 7 5 8 3 6 2 1
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For all F measures, MLFLD-MAXP ranked first with a 9% rise for ex-F1. It also

outperformed in overall micro-F by 4% that shows MLFLD-MAXP more influenced by

frequent labels.

Table 6.24: Summary of MLFLD-MAXP (CV) performance using Hamming distance

Metric BR LP CC RAkEL BRkNN BPMLL MLkNN MAXP

HamLoss 0.2019 0.2248 0.2123 0.1917 0.1590 0.3031 0.1568 0.1555

RankLoss 0.2923 0.3832 0.3032 0.3052 0.1684 0.2262 0.1509 0.1452

OneError 0.4824 0.5596 0.4508 0.4107 0.2551 0.3793 0.2286 0.2199

Coverage 36.823 37.122 36.844 36.994 32.119 27.978 28.006 27.969

AvgPrec 0.6123 0.5525 0.6152 0.6174 0.7305 0.6578 0.7462 0.7528

Accuracy 0.4178 0.4276 0.4483 0.4053 0.4578 0.3923 0.4809 0.5312

SubAcc 0.1993 0.2504 0.2654 0.2319 0.2980 0.1015 0.3029 0.3481

Ex-F1 0.5043 0.5007 0.5227 0.4683 0.5222 0.5077 0.5514 0.6038

Macro-F1 0.4722 0.4520 0.4797 0.4569 0.4925 0.4445 0.4994 0.6962

Micro-F1 0.5385 0.5112 0.5341 0.4921 0.5703 0.5338 0.5893 0.6131

Avg Rank 5.7 7 5 6.3 3.2 5.7 2.1 1

#Wins 0 0 0 0 0 0 0 10

Observations: Average values of ten metrics for the performance of MLFLD-

MAXP is shown in Table 6.24. Again the proposed algorithm has won with the smallest

avg rank 1 and 10 wins. Metric wise observations are:

� MLFLD-MAXP has shown a 15% improvement over the second performing MLkNN.

Four datasets have got better subset accuracy denoting that MLFLD-MAXP has

improved the ability to predict all the labels of an instance correctly.

� It has also shown improved ability of accurate prediction by 10%.

� Ex-F1, macro, and micro F1 are improved by 9%, 7%, and 4% overall, respectively,

and only for Image and Scene individually.

� For both one error and rank loss, overall improvement is 3%, while four and three

datasets are showing reduced values with MLFLD-MAXP, respectively.

� 1% improvement for avg precision is seen with three datasets showing better perfor-

mance.
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� MLFLD-MAXP has shown a 0.7% improvement in avg hamming loss for five datasets

though it has shown an improved hamming loss for only Image and Scene individually.

� Coverage for the first three datasets is improved, though improvement for coverage

is only 0.1%, denoting that performance is almost similar for the proposed and com-

paring algorithm.

6.2.3 Comparison of MLFLD and MLFLD-MAXP performance with cross-

validation using Hamming distance

The performance of both proposed algorithms is compared in this section for

evaluation carried out using Euclidian and Hamming distance in Table 6.25 to 6.34.

Table 6.25: Performance of MLFLD and MLFLD-MAXP (CV) for Hamming loss (↓)
using Hamming distance

Dataset BR LP CC RAkEL BRkNN BPMLL MLkNN MLFLD MAXP

Emotions 0.2425 0.2704 0.2534 0.2412 0.1922 0.2104 0.1959 0.1938 0.1938

Image 0.2277 0.2310 0.2266 0.1958 0.1729 0.5794 0.1690 0.1631 0.1656

Scene 0.1316 0.1476 0.1379 0.1188 0.0924 0.2507 0.0861 0.0797 0.0812

Yeast 0.2469 0.2752 0.2675 0.2487 0.1952 0.2247 0.1940 0.1981 0.1977

CAL500 0.1608 0.2000 0.1760 0.1539 0.1425 0.2501 0.1388 0.1394 0.1394

Average 0.2019 0.2248 0.2123 0.1917 0.1590 0.3031 0.1568 0.1548 0.1555

Rank 6 8 7 5 4 9 3 1 2

Both algorithms have shown improved hamming loss by 1% and 0.7% over com-

peting algorithms. MLFLD has resulted in smaller hamming loss than MLFLD-MAXP for

Image and Scene datasets.

Table 6.26: Performance of MLFLD and MLFLD-MAXP (CV) for Ranking loss (↓) using
Hamming distance

Dataset BR LP CC RAkEL BRkNN BPMLL MLkNN MLFLD MAXP

Emotions 0.3042 0.3407 0.2964 0.2228 0.1593 0.1595 0.1594 0.1483 0.1483

Image 0.3051 0.3062 0.2967 0.2045 0.1805 0.4450 0.1680 0.1570 0.1570

Scene 0.2391 0.2216 0.2323 0.1315 0.0936 0.1645 0.0775 0.0682 0.0682

Yeast 0.3110 0.3966 0.3227 0.3559 0.1778 0.1845 0.1670 0.1689 0.1689

CAL500 0.3023 0.6508 0.3679 0.6111 0.2310 0.1773 0.1828 0.1835 0.1835

Average 0.2923 0.3832 0.3032 0.3052 0.1684 0.2262 0.1509 0.1452 0.1452

Rank 6 9 7 8 4 5 3 1 1
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Table 6.27: Performance of MLFLD and MLFLD-MAXP (CV) for One error (↓) using
Hamming distance

Dataset BR LP CC RAkEL BRkNN BPMLL MLkNN MLFLD MAXP

Emotions 0.3948 0.4267 0.3929 0.3373 0.2597 0.2900 0.2699 0.2492 0.2492

Image 0.4730 0.4645 0.4360 0.3440 0.3300 0.6855 0.3000 0.2916 0.2916

Scene 0.4117 0.4067 0.3722 0.3079 0.2655 0.5393 0.2256 0.2050 0.2050

Yeast 0.4013 0.5123 0.3554 0.2975 0.2309 0.2441 0.2300 0.2378 0.2378

CAL500 0.7312 0.9880 0.6975 0.7669 0.1893 0.1376 0.1176 0.1160 0.1160

Average 0.4824 0.5596 0.4508 0.4107 0.2551 0.3793 0.2286 0.2199 0.2199

Rank 8 9 7 6 4 5 3 1 1

Overall approx. 4% improvement is shown by both algorithms for hamming and

rank loss. Reduction is seen for both losses with Emotions, Image, and Scene. Rank loss is

the only metric that proposed algorithms could improve for CAL500.

Table 6.28: Performance of MLFLD and MLFLD-MAXP (CV) for Coverage (↓) using
Hamming distance

Dataset BR LP CC RAkEL BRkNN BPMLL MLkNN MLFLD MAXP

Emotions 2.5896 2.7083 2.5206 2.1349 1.7831 1.7343 1.7764 1.7102 1.7102

Image 1.4885 1.4855 1.4570 1.0835 0.9845 2.0025 0.9390 0.8964 0.8964

Scene 1.2958 1.2085 1.2671 0.7478 0.5551 0.9032 0.4753 0.4258 0.4258

Yeast 9.2345 9.3515 8.8229 10.033 6.5245 6.5208 6.2750 6.2905 6.2905

CAL500 169.51 170.86 170.15 170.97 150.75 128.73 130.56 130.52 130.52

Average 36.823 37.122 36.844 36.994 32.119 27.978 28.006 27.969 27.969

Rank 6 9 7 8 5 3 4 1 1

Table 6.29: Performance of MLFLD and MLFLD-MAXP (CV) for Average Precision
(↑) using Hamming distance

Dataset BR LP CC RAkEL BRkNN BPMLL MLkNN MLFLD MAXP

Emotions 0.6938 0.6707 0.6996 0.7519 0.8060 0.8026 0.8034 0.8183 0.8183

Image 0.6778 0.6786 0.6960 0.7709 0.7867 0.5378 0.8030 0.8105 0.8105

Scene 0.7148 0.7222 0.7336 0.8061 0.8412 0.6929 0.8652 0.8785 0.8785

Yeast 0.6203 0.5740 0.6310 0.6190 0.7599 0.7477 0.7650 0.7648 0.7648

CAL500 0.3548 0.1171 0.3156 0.1391 0.4589 0.5081 0.4942 0.4918 0.4918

Average 0.6123 0.5525 0.6152 0.6174 0.7305 0.6578 0.7462 0.7528 0.7528

Rank 8 9 7 6 4 5 3 1 1
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Table 6.30: Performance of MLFLD and MLFLD-MAXP (CV) for Accuracy (↑) using
Hamming distance

Dataset BR LP CC RAkEL BRkNN BPMLL MLkNN MLFLD MAXP

Emotions 0.4549 0.4490 0.4739 0.4871 0.5186 0.5573 0.5340 0.5483 0.5627

Image 0.4417 0.4902 0.5046 0.5275 0.4643 0.2098 0.4937 0.5588 0.6169

Scene 0.5461 0.5791 0.6049 0.6034 0.6204 0.3780 0.6635 0.7083 0.7599

Yeast 0.4376 0.4162 0.4287 0.3844 0.5002 0.5197 0.5162 0.5116 0.5140

CAL500 0.2085 0.2036 0.2293 0.0243 0.1856 0.2969 0.1972 0.2023 0.2023

Average 0.4178 0.4276 0.4483 0.4053 0.4578 0.3923 0.4809 0.5059 0.5312

Rank 7 6 5 8 4 9 3 2 1

Table 6.31: Performance of MLFLD and MLFLD-MAXP (CV) for Subset Accuracy (↑)
using Hamming distance

Dataset BR LP CC RAkEL BRkNN BPMLL MLkNN MLFLD MAXP

Emotions 0.1956 0.2092 0.2329 0.2057 0.2917 0.2767 0.2934 0.3051 0.3136

Image 0.2885 0.3755 0.3880 0.3915 0.4025 0.0210 0.4090 0.4632 0.5108

Scene 0.4449 0.5351 0.5521 0.5239 0.5974 0.0694 0.6248 0.6629 0.7117

Yeast 0.0674 0.1324 0.1539 0.0385 0.1982 0.1403 0.1874 0.2046 0.2046

CAL500 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Average 0.1993 0.2504 0.2654 0.2319 0.2980 0.1015 0.3029 0.3272 0.3481

Rank 8 6 5 7 4 9 3 2 1

Table 6.32: Performance of MLFLD and MLFLD-MAXP (CV) for Ex-F1 (↑) using
Hamming distance

Dataset BR LP CC RAkEL BRkNN BPMLL MLkNN MLFLD MAXP

Emotions 0.5414 0.5315 0.5542 0.5788 0.5936 0.6488 0.6141 0.6274 0.6441

Image 0.4970 0.5302 0.5454 0.5750 0.4852 0.3100 0.5223 0.5916 0.6532

Scene 0.5815 0.5940 0.6227 0.6303 0.6281 0.4995 0.6764 0.7235 0.7761

Yeast 0.5620 0.5199 0.5288 0.5112 0.5984 0.6315 0.6204 0.6109 0.6145

CAL500 0.3396 0.3277 0.3623 0.0461 0.3059 0.4486 0.3240 0.3311 0.3311

Average 0.5043 0.5007 0.5227 0.4683 0.5222 0.5077 0.5514 0.5769 0.6038

Rank 7 8 4 9 5 6 3 2 1

14% improvement for a sub. accuracy and 10% for accuracy and Ex-F1 by

MLFLD-MAXP, that is almost twice that of MLFLD.
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Table 6.33: Performance of MLFLD and MLFLD-MAXP (CV) for Macro-F1 (↑) using
Hamming distance

Dataset BR LP CC RAkEL BRkNN BPMLL MLkNN MLFLD MAXP

Emotions 0.5736 0.5520 0.5798 0.6228 0.6282 0.6630 0.6226 0.6584 0.6609

Image 0.5406 0.5319 0.5447 0.5941 0.5492 0.3254 0.5815 0.6287 0.6482

Scene 0.6423 0.5992 0.6318 0.6709 0.6996 0.5558 0.7364 0.7683 0.7795

Yeast 0.3911 0.3834 0.3987 0.2732 0.3960 0.4339 0.3853 NaN NaN

CAL500 0.2134 0.1937 0.2435 0.1233 0.1893 0.2445 0.1714 NaN NaN

Average 0.4722 0.4520 0.4797 0.4569 0.4925 0.4445 0.4994 0.6851 0.6962

Rank 6 8 5 7 4 9 3 2 1

Table 6.34: Performance of MLFLD and MLFLD-MAXP (CV) for Micro-F1 (↑) using
Hamming distance

Dataset BR LP CC RAkEL BRkNN BPMLL MLkNN MLFLD MAXP

Emotions 0.5970 0.5603 0.5908 0.6238 0.6539 0.6774 0.6610 0.6727 0.6766

Image 0.5384 0.5312 0.5438 0.5933 0.5542 0.3537 0.5842 0.6259 0.6449

Scene 0.6312 0.5885 0.6189 0.6627 0.7006 0.5341 0.7332 0.7617 0.7706

Yeast 0.5840 0.5436 0.5507 0.5343 0.6344 0.6472 0.6471 0.6426 0.6439

CAL500 0.3421 0.3322 0.3664 0.0464 0.3085 0.4566 0.3209 0.3294 0.3294

Average 0.5385 0.5112 0.5341 0.4921 0.5703 0.5338 0.5893 0.6065 0.6131

Rank 5 8 6 9 4 7 3 2 1

Again for micro-F1, MLFLD-MAXP is seen 4% enhanced that is double compared

to MLFLD.

Table 6.35: Summary of MLFLD and MLFLD-MAXP (CV) performance for Micro-F1
(↑) using Hamming distance

Metric BR LP CC RAkEL BRkNN BPMLL MLkNN MLFLD MAXP

HamLoss 0.2019 0.2248 0.2123 0.1917 0.1590 0.3031 0.1568 0.1548 0.1555

RankLoss 0.2923 0.3832 0.3032 0.3052 0.1684 0.2262 0.1509 0.1452 0.1452

OneError 0.4824 0.5596 0.4508 0.4107 0.2551 0.3793 0.2286 0.2199 0.2199

Coverage 36.823 37.122 36.844 36.994 32.119 27.978 28.006 27.969 27.969

AvgPrec 0.6123 0.5525 0.6152 0.6174 0.7305 0.6578 0.7462 0.7528 0.7528

Accuracy 0.4178 0.4276 0.4483 0.4053 0.4578 0.3923 0.4809 0.5059 0.5312

SubAcc 0.1993 0.2504 0.2654 0.2319 0.2980 0.1015 0.3029 0.3272 0.3481

Ex-F1 0.5043 0.5007 0.5227 0.4683 0.5222 0.5077 0.5514 0.5769 0.6038

Macro-F1 0.4722 0.4520 0.4797 0.4569 0.4925 0.4445 0.4994 0.6851 0.6962

Micro-F1 0.5385 0.5112 0.5341 0.4921 0.5703 0.5338 0.5893 0.6065 0.6131

Avg Rank 6.7 8 6 7.3 4.2 6.7 3.1 1.5 1.1

#Wins 0 0 0 0 0 0 0 5 9
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Observations: Table 6.35 has shown a comparison of proposed algorithms with

7 other algorithms where MLFLD-MAXP has obtained the smallest avg rank followed by

MLFLD, while both are showing improvement over remaining. They have got 9 and 5 wins

respectively. To summarize,

� For both accuracy and three F measure metrics, MLFLD-MAXP has better perfor-

mance than MLFLD while it is the same for coverage, one error, avg precision and

rank loss.

� Example-wise predictions for all labels are 15%, and 8% improved shown by subset

accuracy. However, accuracy, subset accuracy, and ex-F1 measure improvements

of MLFLD-MAXP are almost double compared to that of MLFLD and more than

approx. 1% for label-based measures.

� MLFLD has done fewer misclassifications than MLFLD-MAXP showing better Ham-

Loss.

Few more points are realized. They are as follows.

� If individual datasets are monitored, then proposed algorithms using Euclidean and

Hamming distances have shown

– All ten metrics improved for Image and Scene.

– Improvement is seen in 5 metrics for Emotions.

– Improved one metric each for Yeast and CAL500.

– Same performance for coverage, one error, rank loss, and avg precision.

� Observations from Table 5.3 and 5.4 in Chapter 5 regarding datasets that may affect

performance of classifier are

– Scene and Image have maximum outliers among all datasets followed by Emo-

tions.

– Scene and Image show more skew that is also reflected by less percent of maxi-

mum Ex/Label, followed by slightly less skew and more Ex/Label for Emotions

among all datasets.
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Table 6.36: Comparison of MLFLD and MLFLD-MAXP Performance (cross-validation)
with Hamming distance

119



– The Unique number of label sets is minimum for Scene and Image and slightly

more for Emotions.

– All these observations implicate that proposed algorithms are sensitive to the

presence of outliers. They are also affected by skew and the unique characteristics

of datasets. That’s why improvement for all metrics for Image and Scene and

half metric for Emotions.

– CAL500 has every label combination unique shown by 100%, followed by Yeast.

CAL500 has a maximum cardinality (26.044) followed by 4.237 by Yeast among

all. It is reflected by both datasets with almost all examples possessing multiple

labels shown by 100 and 98 %MLE (multi-label examples), respectively.

– It can be concluded that proposed algorithms may be more prone to datasets

having very high MLE.

6.2.4 Effect of distance variation for feature similarity on the perfor-

mance of proposed algorithms using Hamming distance for label

dissimilarity

By keeping Hamming distance for label dissimilarity the same, change for feature

similarity distance is done and evaluated in this section for MLFLD and MLFLD-MAXP.

Euclidian, Manhattan, and Minkowski measures are used for feature similarity.

Table 6.37: Effect of distance variation on Hamming Loss (↓) using Hamming distance
and cross-validation

Dataset MLkNN
MLFLD MLFLD-MAXP

Euclidean Manhattan Minkowski Euclidean Manhattan Minkowski

Emotions 0.1959 0.1938 0.1929 0.1918 0.1938 0.1932 0.1929

Image 0.1690 0.1631 0.1630 0.1620 0.1656 0.1651 0.1638

Scene 0.0861 0.0797 0.0792 0.0792 0.0812 0.0810 0.0805

Yeast 0.1940 0.1981 0.1941 0.1990 0.1977 0.1940 0.1989

CAL500 0.1388 0.1394 0.1399 0.1398 0.1394 0.1399 0.1398

Average 0.1568 0.1548 0.1538 0.1544 0.1555 0.1546 0.1552

Rank 7 4 1 2 6 3 5
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Table 6.38: Effect of distance variation on Ranking Loss (↓) using Hamming distance
and cross-validation

Dataset MLkNN
MLFLD MLFLD-MAXP

Euclidean Manhattan Minkowski Euclidean Manhattan Minkowski

Emotions 0.1594 0.1483 0.1493 0.1526 0.1483 0.1493 0.1526

Image 0.1680 0.1570 0.1570 0.1565 0.1570 0.1570 0.1565

Scene 0.0775 0.0682 0.0690 0.0652 0.0682 0.0690 0.0652

Yeast 0.1670 0.1689 0.1666 0.1731 0.1689 0.1666 0.1731

CAL500 0.1828 0.1835 0.1833 0.1834 0.1835 0.1833 0.1834

Average 0.1509 0.1452 0.1450 0.1462 0.1452 0.1450 0.1462

Rank 7 3 1 5 3 1 5

Table 6.39: Effect of distance variation on One Error (↓) using Hamming distance and
cross-validation

Dataset MLkNN
MLFLD MLFLD-MAXP

Euclidean Manhattan Minkowski Euclidean Manhattan Minkowski

Emotions 0.2699 0.2492 0.2525 0.2576 0.2492 0.2525 0.2576

Image 0.3000 0.2916 0.2906 0.2896 0.2916 0.2906 0.2896

Scene 0.2256 0.2050 0.2062 0.2008 0.2050 0.2062 0.2008

Yeast 0.2300 0.2378 0.2320 0.2402 0.2378 0.2320 0.2402

CAL500 0.1176 0.1160 0.1160 0.1240 0.1160 0.1160 0.1240

Average 0.2286 0.2199 0.2195 0.2224 0.2199 0.2195 0.2224

Rank 7 3 1 5 3 1 5

Table 6.40: Effect of distance variation on Coverage (↓) using Hamming distance and
cross-validation

Dataset MLkNN
MLFLD MLFLD-MAXP

Euclidean Manhattan Minkowski Euclidean Manhattan Minkowski

Emotions 1.7764 1.7102 1.7254 1.7356 1.7102 1.7254 1.7356

Image 0.9390 0.8964 0.8994 0.8920 0.8964 0.8994 0.8920

Scene 0.4753 0.4258 0.4300 0.4071 0.4258 0.4300 0.4071

Yeast 6.2750 6.2905 6.2573 6.3386 6.2905 6.2573 6.3386

CAL500 130.56 130.524 130.284 130.678 130.524 130.284 130.678

Average 28.006 27.9694 27.9192 28.0103 27.9694 27.9192 28.0103

Rank 5 3 1 6 3 1 6
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Table 6.41: Effect of distance variation on Average Precision (↑) using Hamming distance
and cross-validation

Dataset MLkNN
MLFLD MLFLD-MAXP

Euclidean Manhattan Minkowski Euclidean Manhattan Minkowski

Emotions 0.8034 0.8183 0.8150 0.8101 0.8183 0.8150 0.8101

Image 0.8030 0.8105 0.8105 0.8125 0.8105 0.8105 0.8125

Scene 0.8652 0.8785 0.8777 0.8829 0.8785 0.8777 0.8829

Yeast 0.7650 0.7648 0.7670 0.7612 0.7648 0.7670 0.7612

CAL500 0.4942 0.4918 0.4918 0.4901 0.4918 0.4918 0.4901

Average 0.7462 0.7528 0.7524 0.7514 0.7528 0.7524 0.7514

Rank 7 1 3 5 1 3 5

Both algorithms show the same performance for coverage, rank loss, oneErr, and

avgPrec with improvement 3-4% for the first 2 metrics and 0.1-0.9% for the remaining 2

metrics over that of competing algorithm.

Table 6.42: Effect of distance variation on Accuracy (↑) using Hamming distance and
cross-validation

Dataset MLkNN
MLFLD MLFLD-MAXP

Euclidean Manhattan Minkowski Euclidean Manhattan Minkowski

Emotions 0.5340 0.5483 0.5488 0.5465 0.5627 0.5612 0.5620

Image 0.4937 0.5588 0.5460 0.5613 0.6169 0.6158 0.6203

Scene 0.6635 0.7083 0.7094 0.7107 0.7599 0.7605 0.7642

Yeast 0.5162 0.5116 0.5208 0.5121 0.5140 0.5211 0.5132

CAL500 0.1972 0.2023 0.1975 0.2034 0.2023 0.1975 0.2034

Average 0.4809 0.5059 0.5045 0.5068 0.5312 0.5312 0.5326

Rank 7 5 6 4 2 2 1

Table 6.43: Effect of distance variation on Subset Accuracy (↑) using Hamming distance
and cross-validation

Dataset MLkNN
MLFLD MLFLD-MAXP

Euclidean Manhattan Minkowski Euclidean Manhattan Minkowski

Emotions 0.2934 0.3051 0.3017 0.2966 0.3136 0.3085 0.3017

Image 0.4090 0.4632 0.4552 0.4612 0.5108 0.5123 0.5138

Scene 0.6248 0.6629 0.6671 0.6658 0.7117 0.7150 0.7167

Yeast 0.1874 0.2046 0.2021 0.1979 0.2046 0.2021 0.1979

CAL500 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Average 0.3029 0.3272 0.3252 0.3243 0.3481 0.3476 0.3460

Rank 7 4 5 6 1 2 3
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Table 6.44: Effect of distance variation on Ex-F1 (↑) using Hamming distance and cross-
validation

Dataset MLkNN
MLFLD MLFLD-MAXP

Euclidean Manhattan Minkowski Euclidean Manhattan Minkowski

Emotions 0.6141 0.6274 0.6292 0.6282 0.6441 0.6436 0.6475

Image 0.5223 0.5916 0.5770 0.5954 0.6532 0.6511 0.6565

Scene 0.6764 0.7235 0.7237 0.7258 0.7761 0.7758 0.7802

Yeast 0.6204 0.6109 0.6220 0.6113 0.6145 0.6226 0.6131

CAL500 0.3240 0.3311 0.3249 0.3325 0.3311 0.3249 0.3325

Average 0.5514 0.5769 0.5754 0.5786 0.6038 0.6036 0.6060

Rank 7 5 6 4 2 3 1

All MAXP variations have shown a 15% improvement while 10% by MLFLD

variations for subAcc. Whereas prior shows 10% improvement in accuracy and Ex-F1 that

is twice than that of MLFLD.

Table 6.45: Effect of distance variation on Macro-F1 (↑) using Hamming distance and
cross-validation

Dataset MLkNN
MLFLD MLFLD-MAXP

Euclidean Manhattan Minkowski Euclidean Manhattan Minkowski

Emotions 0.6226 0.6584 0.6500 0.6633 0.6609 0.6522 0.6686

Image 0.5815 0.6287 0.6203 0.6308 0.6482 0.6455 0.6512

Scene 0.7364 0.7683 0.7689 0.7673 0.7795 0.7799 0.7816

Yeast 0.3853 NaN NaN NaN NaN NaN NaN

CAL500 0.1714 NaN NaN NaN NaN NaN NaN

Average 0.4994 0.6851 0.6797 0.6871 0.6962 0.6925 0.7005

Rank 7 5 6 4 2 3 1

Table 6.46: Effect of distance variation on Micro-F1 (↑) using Hamming distance and
cross-validation

Dataset MLkNN
MLFLD MLFLD-MAXP

Euclidean Manhattan Minkowski Euclidean Manhattan Minkowski

Emotions 0.6610 0.6727 0.6733 0.6746 0.6766 0.6765 0.6787

Image 0.5842 0.6259 0.6170 0.6298 0.6449 0.6420 0.6485

Scene 0.7332 0.7617 0.7625 0.7622 0.7706 0.7707 0.7725

Yeast 0.6471 0.6426 0.6509 0.6415 0.6439 0.6511 0.6421

CAL500 0.3209 0.3294 0.3224 0.3306 0.3294 0.3224 0.3306

Average 0.5893 0.6065 0.6052 0.6077 0.6131 0.6125 0.6145

Rank 7 5 6 4 2 3 1
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Again MAXP variations have beaten MLFLD in micro and macro F1 over five and

three datasets, respectively. MAXP-Minkowski combination has shown better F measure

performance among all at the cost of more computation time.

Table 6.47: Summary of effect of distance variation on MLFLD and MLFLD-MAXP
performance using Hamming distance and cross-validation

MLFLD MLFLD-MAXP
Dataset MLkNN

Euclidean Manhattan Minkowski Euclidean Manhattan Minkowski

HamLoss 0.1568 0.1548 0.1538 0.1544 0.1555 0.1546 0.1552

RankLoss 0.1509 0.1452 0.1450 0.1462 0.1452 0.1450 0.1462

OneError 0.2286 0.2199 0.2195 0.2224 0.2199 0.2195 0.22-24

Coverage 28.006 27.9694 27.9192 28.0103 27.9694 27.9192 28.0103

AvgPrec 0.7462 0.7528 0.7524 0.7514 0.7528 0.7524 0.7514

Accuracy 0.4809 0.5059 0.5045 0.5068 0.5312 0.5312 0.5326

SubAcc 0.3029 0.3272 0.3252 0.3243 0.3481 0.3476 0.3460

Ex-F1 0.5514 0.5769 0.5754 0.5786 0.6038 0.6036 0.6060

Macro-F1 0.4994 0.6851 0.6797 0.6871 0.6962 0.6925 0.7005

Micro-F1 0.5893 0.6065 0.6052 0.6077 0.6131 0.6125 0.6145

ExecTime 17 60 57 70 58 54 65

Avg Rank 6.8 3.8 3.6 4.5 2.5 2.2 3.3

#Wins 0 1 4 0 2 3 4

Table 6.47 has summarized the performance of proposed algorithms by changing

measures for feature similarity while using Hamming distance for label dissimilarity. When

the performance is compared with MLkNN, it is noticed that

� MLFLD-MAXP with Manhattan has outperformed with the smallest avg rank among

all seven experimentations, but having only 3 wins. It takes minimum time among

our six setups. All setups require 3-4 times extra time than MLkNN.

� MLFLD with Manhattan and MLFLD-MAXP with Minkowski, both have four wins

showing similar avg rank. Former requires less execution time than later.

� MLFLD-MAXP with X distance measure is better than MLFLD with the same mea-

sure for both accuracies and three F measures; same for OneErr, Coverage, AvgPrec,

and RankLoss; but no improvement for only HamLoss.

� All MLFLD-MAXP variations are better than MLFLD variations for 2 accuracies

and 3 F measures.
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� Observations for Image and Scene in Table 6.37 to Table 6.46 have shown that the

MAXP-Minkowski combination has worked better for them, indicating that this com-

bination is less prone to outlier and skew.

6.3 Performance of proposed algorithms with train-test splits

of datasets using Hamming distance for label dissimilar-

ity

For thirteen datasets that are used by various researchers in the form of train and

test data, experiments carried in section 6.2 are repeated. In this section, Train-Test splits

of datasets are abbreviated as TrTe.

6.3.1 Performance of MLFLD algorithm using train and test splits of

datasets with Hamming distance

The previous section focused on cross-validation experiments. This section de-

scribes the performance of the MLFLD algorithm using train and test splits of datasets

with Euclidean and Hamming distance shown in Table 6.48 to 6.57.

From Table 6.48, MLFLD is found to improve ham loss for Scene and Image. It

stood at rank two among eight competing algorithms though it is showing performance

slightly less than MLkNN. For the first three datasets, MLFLD has reduced one err, rank

loss, coverage, and increased avg precision, and accuracy. It stood at rank 2 for the first 5

metrics, among others.
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Table 6.48: Performance of MLFLD (TrTe) for Hamming Loss (↓) using Hamming dis-
tance

Dataset BR LP CC RAkEL BRkNN BPMLL MLkNN MLFLD

Emotions 0.3144 0.3226 0.3317 0.3053 0.2170 0.2467 0.2162 0.2195

Scene 0.1364 0.1469 0.1377 0.1307 0.1080 0.2395 0.0962 0.0863

Image 0.1390 0.2323 0.1683 0.1840 0.1153 0.2713 0.1147 0.1127

Yeast 0.2766 0.2977 0.2898 0.2757 0.2029 0.2422 0.2008 0.2072

Arts Humanity 0.0703 0.0891 0.0737 0.0677 0.0912 0.7743 0.0612 0.0628

Business Eco. 0.0332 0.0383 0.0337 0.0309 0.0285 0.4181 0.0269 0.0285

Education 0.0494 0.0633 0.0530 0.0481 0.0406 0.5215 0.0387 0.0465

Entertainment 0.0692 0.0817 0.0713 0.0681 0.0887 0.5909 0.0604 0.0722

Health 0.0425 0.0512 0.0439 0.0502 0.0936 0.3693 0.0458 0.0512

Reference 0.0320 0.0416 0.0320 0.0314 0.0622 0.4103 0.0314 0.0354

Science 0.0403 0.0554 0.0454 0.0387 0.0351 0.6759 0.0325 0.0358

Social Science 0.0268 0.0340 0.0265 0.0335 0.0290 0.0331 0.0218 0.0287

Society Culture 0.0682 0.0844 0.0678 0.0669 0.0555 0.5076 0.0537 0.0585

Average 0.0999 0.1183 0.1058 0.1024 0.0898 0.4077 0.0769 0.0804

Rank 4 7 6 5 3 8 1 2

Table 6.49: Performance of MLFLD (TrTe) for Ranking Loss (↓) using Hamming distance

Dataset BR LP CC RAkEL BRkNN BPMLL MLkNN MLFLD

Emotions 0.3650 0.4050 0.4086 0.2951 0.1694 0.1952 0.1781 0.1570

Scene 0.2315 0.2171 0.2350 0.1591 0.1173 0.1740 0.0930 0.0830

Image 0.1382 0.2240 0.1999 0.1769 0.0924 0.3337 0.1154 0.0888

Yeast 0.3551 0.4311 0.3397 0.3888 0.1902 0.2011 0.1766 0.1839

Arts Humanity 0.2645 0.3958 0.2481 0.4067 0.2670 0.4292 0.1514 0.1707

Business Eco. 0.1150 0.2946 0.1239 0.2689 0.0729 0.1635 0.0373 0.0454

Education 0.2270 0.5558 0.2138 0.4859 0.1744 0.3746 0.0800 0.1112

Entertainment 0.2353 0.4822 0.2650 0.4707 0.2755 0.4254 0.1151 0.1735

Health 0.1502 0.4289 0.1484 0.6860 0.3145 0.2459 0.0605 0.0788

Reference 0.1831 0.4526 0.1787 0.4217 0.2656 0.2894 0.0919 0.1367

Science 0.2485 0.4828 0.2653 0.5390 0.2719 0.4789 0.1167 0.1551

Social Science 0.1511 0.3441 0.1440 0.6310 0.1299 0.4045 0.0561 0.0767

Society Culture 0.2720 0.4048 0.2168 0.4602 0.2093 0.4622 0.1338 0.1543

Average 0.2259 0.3938 0.2298 0.4146 0.1962 0.3214 0.1081 0.1242

Rank 4 7 5 8 3 6 1 2
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Table 6.50: Performance of MLFLD (TrTe) for One Error (↓) using Hamming distance

Dataset BR LP CC RAkEL BRkNN BPMLL MLkNN MLFLD

Emotions 0.4356 0.5396 0.4901 0.4059 0.3069 0.3267 0.3218 0.2970

Scene 0.4189 0.4047 0.3687 0.3470 0.3010 0.5510 0.2425 0.2191

Image 0.2417 0.4100 0.3383 0.3350 0.2267 0.6483 0.2517 0.2183

Yeast 0.3915 0.5703 0.3479 0.3631 0.2595 0.3217 0.2519 0.2835

Arts Humanity 0.6413 0.7153 0.6243 0.7960 0.9043 0.9817 0.6330 0.7323

Business Eco. 0.2653 0.3443 0.2270 0.1843 0.1273 0.9877 0.1213 0.1343

Education 0.6317 0.7647 0.6313 0.7340 0.5983 0.9957 0.5207 0.6710

Entertainment 0.5887 0.6213 0.5713 0.6387 0.7487 0.9640 0.5300 0.6897

Health 0.4027 0.5200 0.4167 0.8090 0.7307 0.9937 0.4190 0.5070

Reference 0.5110 0.5823 0.5230 0.5937 0.9520 0.9823 0.4730 0.5227

Science 0.6827 0.7847 0.6870 0.8780 0.7507 0.9490 0.5810 0.7423

Social Science 0.4047 0.4773 0.4040 0.9223 0.5580 0.9933 0.3270 0.4467

Society Culture 0.5927 0.6803 0.5220 0.9267 0.4553 0.9403 0.4357 0.4870

Average 0.4776 0.5704 0.4732 0.6103 0.5323 0.8181 0.3930 0.4578

Rank 4 6 3 7 5 8 1 2

Table 6.51: Performance of MLFLD (TrTe) for Coverage (↓) using Hamming distance

Dataset BR LP CC RAkEL BRkNN BPMLL MLkNN MLFLD

Emotions 3.0050 3.1634 3.2030 2.6089 1.9158 2.0644 1.9356 1.8119

Scene 1.2834 1.1982 1.3035 0.9013 0.6873 0.9724 0.5661 0.5184

Image 0.7333 1.0250 0.9550 0.8583 0.5100 1.4883 0.6083 0.5000

Yeast 9.8244 9.8571 9.2072 10.5125 6.7764 6.7481 6.4318 6.5540

Arts Humanity 9.0557 12.3843 8.5843 12.6653 8.8693 12.3893 5.4313 5.9870

Business Eco. 5.6803 12.0833 6.1823 12.5133 4.0303 6.3847 2.1840 2.4683

Education 9.4910 20.0320 8.8017 18.0113 7.4220 13.1420 3.4973 4.5247

Entertainment 6.0390 10.9297 6.6727 10.8017 6.7330 9.2197 3.1467 4.3117

Health 7.2900 16.6443 7.1783 24.8783 13.1273 9.5870 3.3043 4.0317

Reference 6.7697 15.7433 6.6327 14.6760 9.5627 9.8253 3.5420 5.0580

Science 12.1370 21.2330 13.0420 23.5560 12.8283 20.5630 6.0470 7.6283

Social Science 7.4227 15.3023 7.1950 25.7307 6.5350 16.7437 3.0340 3.9590

Society Culture 9.7363 13.1083 8.1703 14.4827 7.9757 13.9627 5.3653 5.9630

Average 6.8052 11.7465 6.7022 13.2459 6.6902 9.4685 3.4687 4.1012

Rank 5 7 4 8 3 6 1 2
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Table 6.52: Performance of MLFLD (TrTe) for Average Precision (↑) using Hamming
distance

Dataset BR LP CC RAkEL BRkNN BPMLL MLkNN MLFLD

Emotions 0.6540 0.6082 0.6270 0.6946 0.7916 0.7664 0.7810 0.8024

Scene 0.7143 0.7247 0.7312 0.7751 0.8154 0.6810 0.8511 0.8653

Image 0.8377 0.7342 0.7712 0.7862 0.8692 0.5899 0.8456 0.8718

Yeast 0.5859 0.5399 0.6150 0.5836 0.7440 0.7155 0.7505 0.7396

Arts Humanity 0.4635 0.3603 0.4780 0.2937 0.3250 0.1441 0.5097 0.4459

Business Eco. 0.7596 0.6165 0.7760 0.6826 0.8606 0.2442 0.8798 0.8657

Education 0.4848 0.2620 0.4856 0.2949 0.5086 0.1125 0.5993 0.4806

Entertainment 0.5327 0.4024 0.5301 0.3951 0.4263 0.1493 0.6013 0.4652

Health 0.6502 0.4639 0.6436 0.1905 0.3126 0.1993 0.6817 0.6055

Reference 0.5816 0.4243 0.5720 0.4224 0.2899 0.1514 0.6194 0.5445

Science 0.4203 0.2471 0.4142 0.1600 0.3647 0.0933 0.5324 0.4019

Social Science 0.6641 0.5089 0.6652 0.1071 0.5584 0.0860 0.7481 0.6581

Society Culture 0.4746 0.3386 0.5274 0.1513 0.5645 0.1451 0.6128 0.5651

Average 0.6018 0.4793 0.6028 0.4259 0.5716 0.3137 0.6933 0.6394

Rank 4 6 3 7 5 8 1 2

Table 6.53: Performance of MLFLD (TrTe) for Accuracy (↑) using Hamming distance

Dataset BR LP CC RAkEL BRkNN BPMLL MLkNN MLFLD

Emotions 0.3173 0.3774 0.3859 0.3672 0.4612 0.4905 0.4818 0.5136

Scene 0.5173 0.5787 0.5975 0.5596 0.5439 0.3871 0.6597 0.6749

Image 0.6308 0.5794 0.6165 0.5444 0.6294 0.2992 0.6492 0.7008

Yeast 0.3965 0.3714 0.4120 0.3296 0.4857 0.4976 0.4998 0.4802

Arts Humanity 0.2332 0.2579 0.2895 0.1095 0.0564 0.0651 0.0331 0.0262

Business Eco. 0.6292 0.6176 0.6310 0.6412 0.6811 0.0827 0.6967 0.6813

Education 0.2561 0.2430 0.2987 0.1723 0.1397 0.0592 0.1560 0.0433

Entertainment 0.3105 0.3787 0.3370 0.2870 0.2012 0.0836 0.1862 0.1340

Health 0.4495 0.4725 0.4828 0.1362 0.1088 0.0629 0.3390 0.3533

Reference 0.3968 0.4089 0.3979 0.3259 0.0397 0.0578 0.1032 0.0358

Science 0.2122 0.2127 0.2553 0.0897 0.0397 0.0364 0.0695 0.0120

Social Science 0.4924 0.4974 0.5012 0.0560 0.1718 0.0000 0.2996 0.3686

Society Culture 0.2894 0.2888 0.3690 0.0235 0.2313 0.0402 0.2431 0.1770

Average 0.3947 0.4065 0.4288 0.2802 0.2915 0.1663 0.3398 0.3232

Rank 3 2 1 7 6 8 4 5
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Table 6.54: Performance of MLFLD (TrTe) for Subset Accuracy (↑) using Hamming
distance

Dataset BR LP CC RAkEL BRkNN BPMLL MLkNN MLFLD

Emotions 0.1238 0.1485 0.1485 0.1089 0.2129 0.2129 0.2178 0.2574

Scene 0.4080 0.5401 0.5376 0.4724 0.5167 0.0962 0.6012 0.6279

Image 0.5150 0.5067 0.5533 0.4750 0.5900 0.2550 0.5983 0.6350

Yeast 0.0371 0.0687 0.1047 0.0153 0.1810 0.1069 0.1647 0.1810

Arts Humanity 0.1380 0.1867 0.2040 0.0703 0.0457 0.0000 0.0277 0.0223

Business Eco. 0.4420 0.4407 0.4543 0.4830 0.5140 0.0000 0.5353 0.5357

Education 0.1577 0.1737 0.2083 0.1160 0.1180 0.0000 0.1310 0.0293

Entertainment 0.2130 0.3153 0.2490 0.2150 0.1797 0.0000 0.1687 0.1157

Health 0.2997 0.3580 0.3560 0.0690 0.0327 0.0000 0.2403 0.2517

Reference 0.3250 0.3590 0.3317 0.2943 0.0360 0.0000 0.0963 0.0313

Science 0.1437 0.1663 0.1880 0.0637 0.0357 0.0000 0.0603 0.0110

Social Science 0.3983 0.4403 0.4303 0.0470 0.1597 0.0000 0.2700 0.3313

Society Culture 0.1763 0.1927 0.2563 0.0077 0.1917 0.0000 0.2010 0.1450

Average 0.2598 0.2997 0.3094 0.1875 0.2164 0.0516 0.2548 0.2442

Rank 3 2 1 7 6 8 4 5

Table 6.55: Performance of MLFLD (TrTe) for Ex-F1 (↑) using Hamming distance

Dataset BR LP CC RAkEL BRkNN BPMLL MLkNN MLFLD

Emotions 0.3936 0.4589 0.4749 0.4630 0.5416 0.5795 0.5662 0.5954

Scene 0.5551 0.5917 0.6177 0.5893 0.5530 0.5029 0.6793 0.6906

Image 0.6713 0.6055 0.6378 0.5683 0.6428 0.3139 0.6667 0.7233

Yeast 0.5239 0.4845 0.5244 0.4510 0.5868 0.6148 0.6067 0.5805

Arts Humanity 0.2707 0.2869 0.3223 0.1244 0.0608 0.1198 0.0352 0.0277

Business Eco. 0.6951 0.6817 0.6932 0.7012 0.7407 0.1477 0.7546 0.7357

Education 0.2924 0.2699 0.3316 0.1933 0.1472 0.1093 0.1647 0.0481

Entertainment 0.3475 0.4029 0.3699 0.3143 0.2096 0.1491 0.1924 0.1398

Health 0.5035 0.5157 0.5289 0.1609 0.1453 0.1128 0.3772 0.3923

Reference 0.4224 0.4267 0.4214 0.3368 0.0410 0.1072 0.1055 0.0372

Science 0.2386 0.2305 0.2807 0.0998 0.0411 0.0691 0.0728 0.0124

Social Science 0.5262 0.5186 0.5268 0.0594 0.1761 0.0000 0.3100 0.3819

Society Culture 0.3343 0.3281 0.4140 0.0300 0.2466 0.0732 0.2594 0.1896

Average 0.4442 0.4463 0.4726 0.3147 0.3179 0.2230 0.3685 0.3503

Rank 3 2 1 7 6 8 4 5
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Table 6.56: Performance of MLFLD (TrTe) for Macro-F1 (↑) using Hamming distance

Dataset BR LP CC RAkEL BRkNN BPMLL MLkNN MLFLD

Emotions 0.4294 0.4563 0.4680 0.5063 0.5909 0.6090 0.5880 0.6275

Scene 0.6209 0.5938 0.6280 0.6388 0.6285 0.5697 0.7156 0.7400

Image 0.4930 0.4078 0.4721 0.4665 0.5666 0.2211 0.5904 0.6104

Yeast 0.3645 0.3498 0.3832 0.2482 0.3605 0.4274 0.3444 0.3887

Arts Humanity 0.1845 0.1358 0.1853 0.0706 0.0208 0.1044 0.0343 0.0176

Business Eco. 0.2263 0.1448 0.2185 0.1575 0.1281 0.1365 0.1817 NaN

Education 0.1855 0.1348 0.1842 0.0574 0.1400 0.1335 0.1421 NaN

Entertainment 0.2241 0.2139 0.2240 0.1635 0.0649 0.1130 0.1271 0.1031

Health 0.2955 0.2567 0.3007 0.1790 0.1077 0.1404 0.1567 NaN

Reference 0.1978 0.1695 0.1942 0.1085 0.0673 0.1185 0.0907 NaN

Science 0.1407 0.0897 0.1513 0.0538 0.0179 0.0633 0.0408 0.0072

Social Science 0.2227 0.1526 0.2035 0.0950 0.0890 0.0513 0.1175 NaN

Society Culture 0.1327 0.1099 0.1317 0.0513 0.0673 0.0949 0.0714 0.0343

Average 0.2860 0.2473 0.2881 0.2151 0.2192 0.2141 0.2462 0.3161

Rank 3 4 2 7 6 8 5 1

Table 6.57: Performance of MLFLD (TrTe) for Micro-F1 (↑) using Hamming distance

Dataset BR LP CC RAkEL BRkNN BPMLL MLkNN MLFLD

Emotions 0.4356 0.4835 0.4911 0.5119 0.6104 0.6276 0.6278 0.6472

Scene 0.6132 0.5870 0.6185 0.6290 0.6380 0.5405 0.7156 0.7387

Image 0.6941 0.5459 0.6273 0.5856 0.7048 0.3361 0.7166 0.7412

Yeast 0.5461 0.5141 0.5414 0.4773 0.6193 0.6291 0.6303 0.6144

Arts Humanity 0.3131 0.2693 0.3297 0.1722 0.0580 0.1249 0.0480 0.0373

Business Eco. 0.6639 0.6244 0.6614 0.6486 0.6895 0.1736 0.6990 0.6739

Education 0.3506 0.2753 0.3504 0.2384 0.2336 0.1253 0.2541 0.0934

Entertainment 0.4023 0.3815 0.4041 0.3654 0.2020 0.1683 0.2696 0.1929

Health 0.5343 0.4909 0.5353 0.2374 0.1725 0.1604 0.4033 0.3834

Reference 0.4780 0.4057 0.4752 0.4102 0.0408 0.1267 0.1652 0.0645

Science 0.2876 0.2154 0.2923 0.1396 0.0599 0.0815 0.1063 0.0183

Social Science 0.5424 0.4693 0.5399 0.0943 0.2487 0.0000 0.3865 0.4244

Society Culture 0.3482 0.2975 0.3821 0.0521 0.2825 0.1235 0.2896 0.2207

Average 0.4776 0.4277 0.4807 0.3509 0.3508 0.2475 0.4086 0.3731

Rank 2 3 1 6 7 8 4 5
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Table 6.58 provides summarized performance of MLFLD using Euclidean and

Hamming distance on train-test datasets.

Table 6.58: Summary of MLFLD performance (TrTe) using Hamming distance

Metric BR LP CC RAkEL BRkNN BPMLL MLkNN MLFLD

HamLoss 0.0999 0.1183 0.1058 0.1024 0.0898 0.4077 0.0769 0.0804

RankLoss 0.2259 0.3938 0.2298 0.4146 0.1962 0.3214 0.1081 0.1242

OneError 0.4776 0.5704 0.4732 0.6103 0.5323 0.8181 0.3930 0.4578

Coverage 6.8052 11.7465 6.7022 13.2459 6.6902 9.4685 3.4687 4.1012

AvgPrec 0.6018 0.4793 0.6028 0.4259 0.5716 0.3137 0.6933 0.6394

Accuracy 0.3947 0.4065 0.4288 0.2802 0.2915 0.1663 0.3398 0.3232

SubAcc 0.2598 0.2997 0.3094 0.1875 0.2164 0.0516 0.2548 0.2442

Ex-F1 0.4442 0.4463 0.4726 0.3147 0.3179 0.2230 0.3685 0.3503

Macro-F1 0.2860 0.2473 0.2881 0.2151 0.2192 0.2141 0.2462 0.3161

Micro-F1 0.4776 0.4277 0.4807 0.3509 0.3508 0.2475 0.4086 0.3731

Avg rank 3.5 4.6 2.7 6.9 5.0 7.6 2.6 3.1

#Wins 0 0 4 0 0 0 5 1

MLFLD performed with rank 2 for the first five metrics. For subset accuracy,

MLFLD has shown improvement over five datasets, whereas for remaining parameters, it

improved for 2-3 datasets only. It proves that our algorithm is better in the prediction of

all labels of an example. MLkNN and CC both algorithms are performing very similarly,

followed by the proposed algorithm MLFLD. It is slightly less in terms of average rank over

ten metrics but seems unfortunate in terms of wins.

All neighbor based algorithms, namely BRkNN, MLkNN, and MLFLD, could not

perform well on accuracy and F measure based metrics.

6.3.2 Performance of MLFLD-MAXP algorithm using train and test

splits of datasets using Hamming distance

In this section, the performance of MLFLD-MAXP is observed for train-test splits

(TrTe) using Euclidean distance for feature similarity shown in Table 6.59 to 6.68.
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Table 6.59: Performance of MLFLD-MAXP (TrTe) for Hamming Loss (↓) using Ham-
ming distance

Dataset BR LP CC RAkEL BRkNN BPMLL MLkNN MAXP

Emotions 0.3144 0.3226 0.3317 0.3053 0.2170 0.2467 0.2162 0.2211

Scene 0.1364 0.1469 0.1377 0.1307 0.1080 0.2395 0.0962 0.0886

Image 0.1390 0.2323 0.1683 0.1840 0.1153 0.2713 0.1147 0.1160

Yeast 0.2766 0.2977 0.2898 0.2757 0.2029 0.2422 0.2008 0.2072

Arts Humanity 0.0703 0.0891 0.0737 0.0677 0.0912 0.7743 0.0612 0.0810

Business Eco. 0.0332 0.0383 0.0337 0.0309 0.0285 0.4181 0.0269 0.0285

Education 0.0494 0.0633 0.0530 0.0481 0.0406 0.5215 0.0387 0.0558

Entertainment 0.0692 0.0817 0.0713 0.0681 0.0887 0.5909 0.0604 0.0847

Health 0.0425 0.0512 0.0439 0.0502 0.0936 0.3693 0.0458 0.0519

Reference 0.0320 0.0416 0.0320 0.0314 0.0622 0.4103 0.0314 0.0371

Science 0.0403 0.0554 0.0454 0.0387 0.0351 0.6759 0.0325 0.0478

Social Science 0.0268 0.0340 0.0265 0.0335 0.0290 0.0331 0.0218 0.0309

Society Culture 0.0682 0.0844 0.0678 0.0669 0.0555 0.5076 0.0537 0.0614

Average 0.0999 0.1183 0.1058 0.1024 0.0898 0.4077 0.0769 0.0855

Rank 4 7 6 5 3 8 1 2

Table 6.60: Performance of MLFLD-MAXP (TrTe) for Ranking Loss (↓) using Hamming
distance

Dataset BR LP CC RAkEL BRkNN BPMLL MLkNN MAXP

Emotions 0.3650 0.4050 0.4086 0.2951 0.1694 0.1952 0.1781 0.1570

Scene 0.2315 0.2171 0.2350 0.1591 0.1173 0.1740 0.0930 0.0830

Image 0.1382 0.2240 0.1999 0.1769 0.0924 0.3337 0.1154 0.0888

Yeast 0.3551 0.4311 0.3397 0.3888 0.1902 0.2011 0.1766 0.1839

Arts Humanity 0.2645 0.3958 0.2481 0.4067 0.2670 0.4292 0.1514 0.1707

Business Eco. 0.1150 0.2946 0.1239 0.2689 0.0729 0.1635 0.0373 0.0454

Education 0.2270 0.5558 0.2138 0.4859 0.1744 0.3746 0.0800 0.1112

Entertainment 0.2353 0.4822 0.2650 0.4707 0.2755 0.4254 0.1151 0.1735

Health 0.1502 0.4289 0.1484 0.6860 0.3145 0.2459 0.0605 0.0788

Reference 0.1831 0.4526 0.1787 0.4217 0.2656 0.2894 0.0919 0.1367

Science 0.2485 0.4828 0.2653 0.5390 0.2719 0.4789 0.1167 0.1551

Social Science 0.1511 0.3441 0.1440 0.6310 0.1299 0.4045 0.0561 0.0767

Society Culture 0.2720 0.4048 0.2168 0.4602 0.2093 0.4622 0.1338 0.1543

Average 0.2259 0.3938 0.2298 0.4146 0.1962 0.3214 0.1081 0.1242

Rank 4 7 5 8 3 6 1 2
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Table 6.61: Performance of MLFLD-MAXP (TrTe) for One Error (↓) using Hamming
distance

Dataset BR LP CC RAkEL BRkNN BPMLL MLkNN MAXP

Emotions 0.4356 0.5396 0.4901 0.4059 0.3069 0.3267 0.3218 0.2970

Scene 0.4189 0.4047 0.3687 0.3470 0.3010 0.5510 0.2425 0.2191

Image 0.2417 0.4100 0.3383 0.3350 0.2267 0.6483 0.2517 0.2183

Yeast 0.3915 0.5703 0.3479 0.3631 0.2595 0.3217 0.2519 0.2835

Arts Humanity 0.6413 0.7153 0.6243 0.7960 0.9043 0.9817 0.6330 0.7323

Business Eco. 0.2653 0.3443 0.2270 0.1843 0.1273 0.9877 0.1213 0.1343

Education 0.6317 0.7647 0.6313 0.7340 0.5983 0.9957 0.5207 0.6710

Entertainment 0.5887 0.6213 0.5713 0.6387 0.7487 0.9640 0.5300 0.6897

Health 0.4027 0.5200 0.4167 0.8090 0.7307 0.9937 0.4190 0.5070

Reference 0.5110 0.5823 0.5230 0.5937 0.9520 0.9823 0.4730 0.5227

Science 0.6827 0.7847 0.6870 0.8780 0.7507 0.9490 0.5810 0.7423

Social Science 0.4047 0.4773 0.4040 0.9223 0.5580 0.9933 0.3270 0.4467

Society Culture 0.5927 0.6803 0.5220 0.9267 0.4553 0.9403 0.4357 0.4870

Average 0.4776 0.5704 0.4732 0.6103 0.5323 0.8181 0.3930 0.4578

Rank 4 6 3 7 5 8 1 2

Table 6.62: Performance of MLFLD-MAXP (TrTe) for Coverage (↓) using Hamming
distance

Dataset BR LP CC RAkEL BRkNN BPMLL MLkNN MAXP

Emotions 3.0050 3.1634 3.2030 2.6089 1.9158 2.0644 1.9356 1.8119

Scene 1.2834 1.1982 1.3035 0.9013 0.6873 0.9724 0.5661 0.5184

Image 0.7333 1.0250 0.9550 0.8583 0.5100 1.4883 0.6083 0.5000

Yeast 9.8244 9.8571 9.2072 10.5125 6.7764 6.7481 6.4318 6.5540

Arts Humanity 9.0557 12.3843 8.5843 12.6653 8.8693 12.3893 5.4313 5.9870

Business Eco. 5.6803 12.0833 6.1823 12.5133 4.0303 6.3847 2.1840 2.4683

Education 9.4910 20.0320 8.8017 18.0113 7.4220 13.1420 3.4973 4.5247

Entertainment 6.0390 10.9297 6.6727 10.8017 6.7330 9.2197 3.1467 4.3117

Health 7.2900 16.6443 7.1783 24.8783 13.1273 9.5870 3.3043 4.0317

Reference 6.7697 15.7433 6.6327 14.6760 9.5627 9.8253 3.5420 5.0580

Science 12.1370 21.2330 13.0420 23.5560 12.8283 20.5630 6.0470 7.6283

Social Science 7.4227 15.3023 7.1950 25.7307 6.5350 16.7437 3.0340 3.9590

Society Culture 9.7363 13.1083 8.1703 14.4827 7.9757 13.9627 5.3653 5.9630

Average 6.8052 11.7465 6.7022 13.2459 6.6902 9.4685 3.4687 4.1012

Rank 5 7 4 8 3 6 1 2
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Table 6.63: Performance of MLFLD-MAXP (TrTe) for Average Precision (↑) using Ham-
ming distance

Dataset BR LP CC RAkEL BRkNN BPMLL MLkNN MAXP

Emotions 0.6540 0.6082 0.6270 0.6946 0.7916 0.7664 0.7810 0.8024

Scene 0.7143 0.7247 0.7312 0.7751 0.8154 0.6810 0.8511 0.8653

Image 0.8377 0.7342 0.7712 0.7862 0.8692 0.5899 0.8456 0.8718

Yeast 0.5859 0.5399 0.6150 0.5836 0.7440 0.7155 0.7505 0.7396

Arts Humanity 0.4635 0.3603 0.4780 0.2937 0.3250 0.1441 0.5097 0.4459

Business Eco. 0.7596 0.6165 0.7760 0.6826 0.8606 0.2442 0.8798 0.8657

Education 0.4848 0.2620 0.4856 0.2949 0.5086 0.1125 0.5993 0.4806

Entertainment 0.5327 0.4024 0.5301 0.3951 0.4263 0.1493 0.6013 0.4652

Health 0.6502 0.4639 0.6436 0.1905 0.3126 0.1993 0.6817 0.6055

Reference 0.5816 0.4243 0.5720 0.4224 0.2899 0.1514 0.6194 0.5445

Science 0.4203 0.2471 0.4142 0.1600 0.3647 0.0933 0.5324 0.4019

Social Science 0.6641 0.5089 0.6652 0.1071 0.5584 0.0860 0.7481 0.6581

Society Culture 0.4746 0.3386 0.5274 0.1513 0.5645 0.1451 0.6128 0.5651

Average 0.6018 0.4793 0.6028 0.4259 0.5716 0.3137 0.6933 0.6394

Rank 4 6 3 7 5 8 1 2

Table 6.64: Performance of MLFLD-MAXP (TrTe) for Accuracy (↑) using Hamming
distance

Dataset BR LP CC RAkEL BRkNN BPMLL MLkNN MAXP

Emotions 0.3173 0.3774 0.3859 0.3672 0.4612 0.4905 0.4818 0.5202

Scene 0.5173 0.5787 0.5975 0.5596 0.5439 0.3871 0.6597 0.7389

Image 0.6308 0.5794 0.6165 0.5444 0.6294 0.2992 0.6492 0.7292

Yeast 0.3965 0.3714 0.4120 0.3296 0.4857 0.4976 0.4998 0.4821

Arts Humanity 0.2332 0.2579 0.2895 0.1095 0.0564 0.0651 0.0331 0.2058

Business Eco. 0.6292 0.6176 0.6310 0.6412 0.6811 0.0827 0.6967 0.6825

Education 0.2561 0.2430 0.2987 0.1723 0.1397 0.0592 0.1560 0.2636

Entertainment 0.3105 0.3787 0.3370 0.2870 0.2012 0.0836 0.1862 0.2572

Health 0.4495 0.4725 0.4828 0.1362 0.1088 0.0629 0.3390 0.3714

Reference 0.3968 0.4089 0.3979 0.3259 0.0397 0.0578 0.1032 0.4280

Science 0.2122 0.2127 0.2553 0.0897 0.0397 0.0364 0.0695 0.2141

Social Science 0.4924 0.4974 0.5012 0.0560 0.1718 0.0000 0.2996 0.4938

Society Culture 0.2894 0.2888 0.3690 0.0235 0.2313 0.0402 0.2431 0.3833

Average 0.3947 0.4065 0.4288 0.2802 0.2915 0.1663 0.3398 0.4439

Rank 4 3 2 7 6 8 5 1
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Table 6.65: Performance of MLFLD-MAXP (TrTe) for Subset Accuracy (↑) using Ham-
ming distance

Dataset BR LP CC RAkEL BRkNN BPMLL MLkNN MAXP

Emotions 0.1238 0.1485 0.1485 0.1089 0.2129 0.2129 0.2178 0.2574

Scene 0.4080 0.5401 0.5376 0.4724 0.5167 0.0962 0.6012 0.6890

Image 0.5150 0.5067 0.5533 0.4750 0.5900 0.2550 0.5983 0.6617

Yeast 0.0371 0.0687 0.1047 0.0153 0.1810 0.1069 0.1647 0.1810

Arts Humanity 0.1380 0.1867 0.2040 0.0703 0.0457 0.0000 0.0277 0.1643

Business Eco. 0.4420 0.4407 0.4543 0.4830 0.5140 0.0000 0.5353 0.5363

Education 0.1577 0.1737 0.2083 0.1160 0.1180 0.0000 0.1310 0.2117

Entertainment 0.2130 0.3153 0.2490 0.2150 0.1797 0.0000 0.1687 0.2097

Health 0.2997 0.3580 0.3560 0.0690 0.0327 0.0000 0.2403 0.2637

Reference 0.3250 0.3590 0.3317 0.2943 0.0360 0.0000 0.0963 0.3820

Science 0.1437 0.1663 0.1880 0.0637 0.0357 0.0000 0.0603 0.1827

Social Science 0.3983 0.4403 0.4303 0.0470 0.1597 0.0000 0.2700 0.4380

Society Culture 0.1763 0.1927 0.2563 0.0077 0.1917 0.0000 0.2010 0.2947

Average 0.2598 0.2997 0.3094 0.1875 0.2164 0.0516 0.2548 0.3440

Rank 4 3 2 7 6 8 5 1

Table 6.66: Performance of MLFLD-MAXP (TrTe) for Ex-F1 (↑) using Hamming dis-
tance

Dataset BR LP CC RAkEL BRkNN BPMLL MLkNN MAXP

Emotions 0.3936 0.4589 0.4749 0.4630 0.5416 0.5795 0.5662 0.6045

Scene 0.5551 0.5917 0.6177 0.5893 0.5530 0.5029 0.6793 0.7556

Image 0.6713 0.6055 0.6378 0.5683 0.6428 0.3139 0.6667 0.7522

Yeast 0.5239 0.4845 0.5244 0.4510 0.5868 0.6148 0.6067 0.5835

Arts Humanity 0.2707 0.2869 0.3223 0.1244 0.0608 0.1198 0.0352 0.2226

Business Eco. 0.6951 0.6817 0.6932 0.7012 0.7407 0.1477 0.7546 0.7370

Education 0.2924 0.2699 0.3316 0.1933 0.1472 0.1093 0.1647 0.2828

Entertainment 0.3475 0.4029 0.3699 0.3143 0.2096 0.1491 0.1924 0.2738

Health 0.5035 0.5157 0.5289 0.1609 0.1453 0.1128 0.3772 0.4128

Reference 0.4224 0.4267 0.4214 0.3368 0.0410 0.1072 0.1055 0.4439

Science 0.2386 0.2305 0.2807 0.0998 0.0411 0.0691 0.0728 0.2264

Social Science 0.5262 0.5186 0.5268 0.0594 0.1761 0.0000 0.3100 0.5139

Society Culture 0.3343 0.3281 0.4140 0.0300 0.2466 0.0732 0.2594 0.4184

Average 0.4442 0.4463 0.4726 0.3147 0.3179 0.2230 0.3685 0.4790

Rank 4 3 2 7 6 8 5 1
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Table 6.67: Performance of MLFLD-MAXP (TrTe) for Macro-F1 (↑) using Hamming
distance

Dataset BR LP CC RAkEL BRkNN BPMLL MLkNN MAXP

Emotions 0.4294 0.4563 0.4680 0.5063 0.5909 0.6090 0.5880 0.6273

Scene 0.6209 0.5938 0.6280 0.6388 0.6285 0.5697 0.7156 0.7569

Image 0.4930 0.4078 0.4721 0.4665 0.5666 0.2211 0.5904 0.6202

Yeast 0.3645 0.3498 0.3832 0.2482 0.3605 0.4274 0.3444 0.3891

Arts Humanity 0.1845 0.1358 0.1853 0.0706 0.0208 0.1044 0.0343 0.0583

Business Eco. 0.2263 0.1448 0.2185 0.1575 0.1281 0.1365 0.1817 NaN

Education 0.1855 0.1348 0.1842 0.0574 0.1400 0.1335 0.1421 NaN

Entertainment 0.2241 0.2139 0.2240 0.1635 0.0649 0.1130 0.1271 0.1370

Health 0.2955 0.2567 0.3007 0.1790 0.1077 0.1404 0.1567 NaN

Reference 0.1978 0.1695 0.1942 0.1085 0.0673 0.1185 0.0907 NaN

Science 0.1407 0.0897 0.1513 0.0538 0.0179 0.0633 0.0408 0.0407

Social Science 0.2227 0.1526 0.2035 0.0950 0.0890 0.0513 0.1175 NaN

Society Culture 0.1327 0.1099 0.1317 0.0513 0.0673 0.0949 0.0714 0.0608

Average 0.2860 0.2473 0.2881 0.2151 0.2192 0.2141 0.2462 0.3363

Rank 3 4 2 7 6 8 5 1

Table 6.68: Performance of MLFLD-MAXP (TrTe) for Micro-F1 (↑) using Hamming
distance

Dataset BR LP CC RAkEL BRkNN BPMLL MLkNN MAXP

Emotions 0.4356 0.4835 0.4911 0.5119 0.6104 0.6276 0.6278 0.6483

Scene 0.6132 0.5870 0.6185 0.6290 0.6380 0.5405 0.7156 0.7502

Image 0.6941 0.5459 0.6273 0.5856 0.7048 0.3361 0.7166 0.7426

Yeast 0.5461 0.5141 0.5414 0.4773 0.6193 0.6291 0.6303 0.6152

Arts Humanity 0.3131 0.2693 0.3297 0.1722 0.0580 0.1249 0.0480 0.2026

Business Eco. 0.6639 0.6244 0.6614 0.6486 0.6895 0.1736 0.6990 0.6747

Education 0.3506 0.2753 0.3504 0.2384 0.2336 0.1253 0.2541 0.2752

Entertainment 0.4023 0.3815 0.4041 0.3654 0.2020 0.1683 0.2696 0.2780

Health 0.5343 0.4909 0.5353 0.2374 0.1725 0.1604 0.4033 0.3921

Reference 0.4780 0.4057 0.4752 0.4102 0.0408 0.1267 0.1652 0.4388

Science 0.2876 0.2154 0.2923 0.1396 0.0599 0.0815 0.1063 0.2124

Social Science 0.5424 0.4693 0.5399 0.0943 0.2487 0.0000 0.3865 0.4822

Society Culture 0.3482 0.2975 0.3821 0.0521 0.2825 0.1235 0.2896 0.3826

Average 0.4776 0.4277 0.4807 0.3509 0.3508 0.2475 0.4086 0.4688

Rank 2 4 1 6 7 8 5 3
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Table 6.69: Summary of MLFLD-MAXP (TrTe) performance using Hamming distance

Metric BR LP CC RAkEL BRkNN BPMLL MLkNN MAXP

HamLoss 0.0999 0.1183 0.1058 0.1024 0.0898 0.4077 0.0769 0.0855

RankLoss 0.2259 0.3938 0.2298 0.4146 0.1962 0.3214 0.1081 0.1242

OneError 0.4776 0.5704 0.4732 0.6103 0.5323 0.8181 0.3930 0.4578

Coverage 6.8052 11.7465 6.7022 13.2459 6.6902 9.4685 3.4687 4.1012

AvgPrec 0.6018 0.4793 0.6028 0.4259 0.5716 0.3137 0.6933 0.6394

Accuracy 0.3947 0.4065 0.4288 0.2802 0.2915 0.1663 0.3398 0.4439

SubAcc 0.2598 0.2997 0.3094 0.1875 0.2164 0.0516 0.2548 0.3440

Ex-F1 0.4442 0.4463 0.4726 0.3147 0.3179 0.2230 0.3685 0.4790

Macro-F1 0.2860 0.2473 0.2881 0.2151 0.2192 0.2141 0.2462 0.3363

Micro-F1 0.4776 0.4277 0.4807 0.3509 0.3508 0.2475 0.4086 0.4688

Avg Rank 3.8 5.0 3.0 6.9 5.0 7.6 3.0 1.7

#Wins 0 0 1 0 0 0 5 4

Observations: From Table 6.69, MLFLD-MAXP performance is improved in

terms of average rank over all the measures though it shows only 4 wins among all the

metrics. Though MLkNN shows 5 wins, its avg rank is almost twice than of MLFLD-

MAXP. To summarize,

� Subset accuracy is the most improved metric by MLFLD-MAXP. It is increased for

eight datasets among 13 with 11% and 35% rise w.r.t. CC and MLkNN resp.

� MLFLD-MAXP has topped for four metrics, whereas MLkNN has topped for five

metrics.

� MLFLD-MAXP and MLkNN achieved rank 1 and 5 respectively, for two accuracy

measures, Ex-F1 and macro-F1. They worked at positions 2 and 1, respectively, for

parameters, namely, ham and rank loss, avg precision, coverage, and one err.

� Accuracy and ex-F1 have been raised by 30% w.r.t. MLkNN.

� MLFLD-MAXP got rank 3 for micro F1 for which MLkNN got position 5. . It raised

micro-F by 14% over MLkNN. Macro-F could not be measured for five datasets.

� MLFLD-MAXP performed with rank two among eight algorithms though it is able

to improve ham loss for Scene only. The difference between ham loss computed by
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the proposed algorithm and MLkNN is minimal except for Arts, Education, and

Entertainment.

� For Emotions, Scene, and Image, MLFLD-MAXP has improved one err, rank loss,

coverage and avg precision. It stood second among all for rank.

6.3.3 Comparison of MLFLD and MLFLD-MAXP

Performance comparison of proposed algorithms is carried out in this section for

Euclidean and Hamming distance shown in Table 6.70 to 6.79.

Table 6.70: Performance of MLFLD and MLFLD-MAXP (TrTe) for Hamming Loss (↓)
using Hamming distance

Dataset BR LP CC RAkEL BRkNN BPMLL MLkNN MLFLD MAXP

Emotions 0.3144 0.3226 0.3317 0.3053 0.2170 0.2467 0.2162 0.2195 0.2211

Scene 0.1364 0.1469 0.1377 0.1307 0.1080 0.2395 0.0962 0.0863 0.0886

Image 0.1390 0.2323 0.1683 0.1840 0.1153 0.2713 0.1147 0.1127 0.1160

Yeast 0.2766 0.2977 0.2898 0.2757 0.2029 0.2422 0.2008 0.2072 0.2072

Arts Humanity 0.0703 0.0891 0.0737 0.0677 0.0912 0.7743 0.0612 0.0628 0.0810

Business Eco. 0.0332 0.0383 0.0337 0.0309 0.0285 0.4181 0.0269 0.0285 0.0285

Education 0.0494 0.0633 0.0530 0.0481 0.0406 0.5215 0.0387 0.0465 0.0558

Entertainment 0.0692 0.0817 0.0713 0.0681 0.0887 0.5909 0.0604 0.0722 0.0847

Health 0.0425 0.0512 0.0439 0.0502 0.0936 0.3693 0.0458 0.0512 0.0519

Reference 0.0320 0.0416 0.0320 0.0314 0.0622 0.4103 0.0314 0.0354 0.0371

Science 0.0403 0.0554 0.0454 0.0387 0.0351 0.6759 0.0325 0.0358 0.0478

Social Science 0.0268 0.0340 0.0265 0.0335 0.0290 0.0331 0.0218 0.0287 0.0309

Society Culture 0.0682 0.0844 0.0678 0.0669 0.0555 0.5076 0.0537 0.0585 0.0614

Average 0.0999 0.1183 0.1058 0.1024 0.0898 0.4077 0.0769 0.0804 0.0855

Rank 5 8 7 6 4 9 1 2 3
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Table 6.71: Performance of MLFLD and MLFLD-MAXP (TrTe) for Ranking Loss (↓)
using Hamming distance

Dataset BR LP CC RAkEL BRkNN BPMLL MLkNN MLFLD MAXP

Emotions 0.3650 0.4050 0.4086 0.2951 0.1694 0.1952 0.1781 0.1570 0.1570

Scene 0.2315 0.2171 0.2350 0.1591 0.1173 0.1740 0.0930 0.0830 0.0830

Image 0.1382 0.2240 0.1999 0.1769 0.0924 0.3337 0.1154 0.0888 0.0888

Yeast 0.3551 0.4311 0.3397 0.3888 0.1902 0.2011 0.1766 0.1839 0.1839

Arts Humanity 0.2645 0.3958 0.2481 0.4067 0.2670 0.4292 0.1514 0.1707 0.1707

Business Eco. 0.1150 0.2946 0.1239 0.2689 0.0729 0.1635 0.0373 0.0454 0.0454

Education 0.2270 0.5558 0.2138 0.4859 0.1744 0.3746 0.0800 0.1112 0.1112

Entertainment 0.2353 0.4822 0.2650 0.4707 0.2755 0.4254 0.1151 0.1735 0.1735

Health 0.1502 0.4289 0.1484 0.6860 0.3145 0.2459 0.0605 0.0788 0.0788

Reference 0.1831 0.4526 0.1787 0.4217 0.2656 0.2894 0.0919 0.1367 0.1367

Science 0.2485 0.4828 0.2653 0.5390 0.2719 0.4789 0.1167 0.1551 0.1551

Social Science 0.1511 0.3441 0.1440 0.6310 0.1299 0.4045 0.0561 0.0767 0.0767

Society Culture 0.2720 0.4048 0.2168 0.4602 0.2093 0.4622 0.1338 0.1543 0.1543

Average 0.2259 0.3938 0.2298 0.4146 0.1962 0.3214 0.1081 0.1242 0.1242

Rank 5 8 6 9 4 7 1 2 2

Table 6.72: Performance of MLFLD and MLFLD-MAXP (TrTe) for One Error (↓) using
Hamming distance

Dataset BR LP CC RAkEL BRkNN BPMLL MLkNN MLFLD MAXP

Emotions 0.4356 0.5396 0.4901 0.4059 0.3069 0.3267 0.3218 0.2970 0.2970

Scene 0.4189 0.4047 0.3687 0.3470 0.3010 0.5510 0.2425 0.2191 0.2191

Image 0.2417 0.4100 0.3383 0.3350 0.2267 0.6483 0.2517 0.2183 0.2183

Yeast 0.3915 0.5703 0.3479 0.3631 0.2595 0.3217 0.2519 0.2835 0.2835

Arts Humanity 0.6413 0.7153 0.6243 0.7960 0.9043 0.9817 0.6330 0.7323 0.7323

Business Eco. 0.2653 0.3443 0.2270 0.1843 0.1273 0.9877 0.1213 0.1343 0.1343

Education 0.6317 0.7647 0.6313 0.7340 0.5983 0.9957 0.5207 0.6710 0.6710

Entertainment 0.5887 0.6213 0.5713 0.6387 0.7487 0.9640 0.5300 0.6897 0.6897

Health 0.4027 0.5200 0.4167 0.8090 0.7307 0.9937 0.4190 0.5070 0.5070

Reference 0.5110 0.5823 0.5230 0.5937 0.9520 0.9823 0.4730 0.5227 0.5227

Science 0.6827 0.7847 0.6870 0.8780 0.7507 0.9490 0.5810 0.7423 0.7423

Social Science 0.4047 0.4773 0.4040 0.9223 0.5580 0.9933 0.3270 0.4467 0.4467

Society Culture 0.5927 0.6803 0.5220 0.9267 0.4553 0.9403 0.4357 0.4870 0.4870

Average 0.4776 0.5704 0.4732 0.6103 0.5323 0.8181 0.3930 0.4578 0.4578

Rank 5 7 4 8 6 9 1 2 2
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Table 6.73: Performance of MLFLD and MLFLD-MAXP (TrTe) for Coverage (↓) using
Hamming distance

Dataset BR LP CC RAkEL BRkNN BPMLL MLkNN MLFLD MAXP

Emotions 3.0050 3.1634 3.2030 2.6089 1.9158 2.0644 1.9356 1.8119 1.8119

Scene 1.2834 1.1982 1.3035 0.9013 0.6873 0.9724 0.5661 0.5184 0.5184

Image 0.7333 1.0250 0.9550 0.8583 0.5100 1.4883 0.6083 0.5000 0.5000

Yeast 9.8244 9.8571 9.2072 10.5125 6.7764 6.7481 6.4318 6.5540 6.5540

Arts Humanity 9.0557 12.3843 8.5843 12.6653 8.8693 12.3893 5.4313 5.9870 5.9870

Business Eco. 5.6803 12.0833 6.1823 12.5133 4.0303 6.3847 2.1840 2.4683 2.4683

Education 9.4910 20.0320 8.8017 18.0113 7.4220 13.1420 3.4973 4.5247 4.5247

Entertainment 6.0390 10.9297 6.6727 10.8017 6.7330 9.2197 3.1467 4.3117 4.3117

Health 7.2900 16.6443 7.1783 24.8783 13.1273 9.5870 3.3043 4.0317 4.0317

Reference 6.7697 15.7433 6.6327 14.6760 9.5627 9.8253 3.5420 5.0580 5.0580

Science 12.1370 21.2330 13.0420 23.5560 12.8283 20.5630 6.0470 7.6283 7.6283

Social Science 7.4227 15.3023 7.1950 25.7307 6.5350 16.7437 3.0340 3.9590 3.9590

Society Culture 9.7363 13.1083 8.1703 14.4827 7.9757 13.9627 5.3653 5.9630 5.9630

Average 6.8052 11.7465 6.7022 13.2459 6.6902 9.4685 3.4687 4.1012 4.1012

Rank 6 8 5 9 4 7 1 2 2

Table 6.74: Performance of MLFLD and MLFLD-MAXP (TrTe) for Average Precision
(↑) using Hamming distance

Dataset BR LP CC RAkEL BRkNN BPMLL MLkNN MLFLD MAXP

Emotions 0.6540 0.6082 0.6270 0.6946 0.7916 0.7664 0.7810 0.8024 0.8024

Scene 0.7143 0.7247 0.7312 0.7751 0.8154 0.6810 0.8511 0.8653 0.8653

Image 0.8377 0.7342 0.7712 0.7862 0.8692 0.5899 0.8456 0.8718 0.8718

Yeast 0.5859 0.5399 0.6150 0.5836 0.7440 0.7155 0.7505 0.7396 0.7396

Arts Humanity 0.4635 0.3603 0.4780 0.2937 0.3250 0.1441 0.5097 0.4459 0.4459

Business Eco. 0.7596 0.6165 0.7760 0.6826 0.8606 0.2442 0.8798 0.8657 0.8657

Education 0.4848 0.2620 0.4856 0.2949 0.5086 0.1125 0.5993 0.4806 0.4806

Entertainment 0.5327 0.4024 0.5301 0.3951 0.4263 0.1493 0.6013 0.4652 0.4652

Health 0.6502 0.4639 0.6436 0.1905 0.3126 0.1993 0.6817 0.6055 0.6055

Reference 0.5816 0.4243 0.5720 0.4224 0.2899 0.1514 0.6194 0.5445 0.5445

Science 0.4203 0.2471 0.4142 0.1600 0.3647 0.0933 0.5324 0.4019 0.4019

Social Science 0.6641 0.5089 0.6652 0.1071 0.5584 0.0860 0.7481 0.6581 0.6581

Society Culture 0.4746 0.3386 0.5274 0.1513 0.5645 0.1451 0.6128 0.5651 0.5651

Average 0.6018 0.4793 0.6028 0.4259 0.5716 0.3137 0.6933 0.6394 0.6394

Rank 5 7 4 8 6 9 1 2 2
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Table 6.75: Performance of MLFLD and MLFLD-MAXP (TrTe) for Accuracy (↑) using
Hamming distance

Dataset BR LP CC RAkEL BRkNN BPMLL MLkNN MLFLD MAXP

Emotions 0.3173 0.3774 0.3859 0.3672 0.4612 0.4905 0.4818 0.5136 0.5202

Scene 0.5173 0.5787 0.5975 0.5596 0.5439 0.3871 0.6597 0.6749 0.7389

Image 0.6308 0.5794 0.6165 0.5444 0.6294 0.2992 0.6492 0.7008 0.7292

Yeast 0.3965 0.3714 0.4120 0.3296 0.4857 0.4976 0.4998 0.4802 0.4821

Arts Humanity 0.2332 0.2579 0.2895 0.1095 0.0564 0.0651 0.0331 0.0262 0.2058

Business Eco. 0.6292 0.6176 0.6310 0.6412 0.6811 0.0827 0.6967 0.6813 0.6825

Education 0.2561 0.2430 0.2987 0.1723 0.1397 0.0592 0.1560 0.0433 0.2636

Entertainment 0.3105 0.3787 0.3370 0.2870 0.2012 0.0836 0.1862 0.1340 0.2572

Health 0.4495 0.4725 0.4828 0.1362 0.1088 0.0629 0.3390 0.3533 0.3714

Reference 0.3968 0.4089 0.3979 0.3259 0.0397 0.0578 0.1032 0.0358 0.4280

Science 0.2122 0.2127 0.2553 0.0897 0.0397 0.0364 0.0695 0.0120 0.2141

Social Science 0.4924 0.4974 0.5012 0.0560 0.1718 0.0000 0.2996 0.3686 0.4938

Society Culture 0.2894 0.2888 0.3690 0.0235 0.2313 0.0402 0.2431 0.1770 0.3833

Average 0.3947 0.4065 0.4288 0.2802 0.2915 0.1663 0.3398 0.3232 0.4439

Rank 4 3 2 8 7 9 5 6 1

Table 6.76: Performance of MLFLD and MLFLD-MAXP (TrTe) for Subset Accuracy
(↑) using Hamming distance

Dataset BR LP CC RAkEL BRkNN BPMLL MLkNN MLFLD MAXP

Emotions 0.1238 0.1485 0.1485 0.1089 0.2129 0.2129 0.2178 0.2574 0.2574

Scene 0.4080 0.5401 0.5376 0.4724 0.5167 0.0962 0.6012 0.6279 0.6890

Image 0.5150 0.5067 0.5533 0.4750 0.5900 0.2550 0.5983 0.6350 0.6617

Yeast 0.0371 0.0687 0.1047 0.0153 0.1810 0.1069 0.1647 0.1810 0.1810

Arts Humanity 0.1380 0.1867 0.2040 0.0703 0.0457 0.0000 0.0277 0.0223 0.1643

Business Eco. 0.4420 0.4407 0.4543 0.4830 0.5140 0.0000 0.5353 0.5357 0.5363

Education 0.1577 0.1737 0.2083 0.1160 0.1180 0.0000 0.1310 0.0293 0.2117

Entertainment 0.2130 0.3153 0.2490 0.2150 0.1797 0.0000 0.1687 0.1157 0.2097

Health 0.2997 0.3580 0.3560 0.0690 0.0327 0.0000 0.2403 0.2517 0.2637

Reference 0.3250 0.3590 0.3317 0.2943 0.0360 0.0000 0.0963 0.0313 0.3820

Science 0.1437 0.1663 0.1880 0.0637 0.0357 0.0000 0.0603 0.0110 0.1827

Social Science 0.3983 0.4403 0.4303 0.0470 0.1597 0.0000 0.2700 0.3313 0.4380

Society Culture 0.1763 0.1927 0.2563 0.0077 0.1917 0.0000 0.2010 0.1450 0.2947

Average 0.2598 0.2997 0.3094 0.1875 0.2164 0.0516 0.2548 0.2442 0.3440

Rank 4 3 2 8 7 9 5 6 1
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Table 6.77: Performance of MLFLD and MLFLD-MAXP (TrTe) for Ex-F1 (↑) using
Hamming distance

Dataset BR LP CC RAkEL BRkNN BPMLL MLkNN MLFLD MAXP

Emotions 0.3936 0.4589 0.4749 0.4630 0.5416 0.5795 0.5662 0.5954 0.6045

Scene 0.5551 0.5917 0.6177 0.5893 0.5530 0.5029 0.6793 0.6906 0.7556

Image 0.6713 0.6055 0.6378 0.5683 0.6428 0.3139 0.6667 0.7233 0.7522

Yeast 0.5239 0.4845 0.5244 0.4510 0.5868 0.6148 0.6067 0.5805 0.5835

Arts Humanity 0.2707 0.2869 0.3223 0.1244 0.0608 0.1198 0.0352 0.0277 0.2226

Business Eco. 0.6951 0.6817 0.6932 0.7012 0.7407 0.1477 0.7546 0.7357 0.7370

Education 0.2924 0.2699 0.3316 0.1933 0.1472 0.1093 0.1647 0.0481 0.2828

Entertainment 0.3475 0.4029 0.3699 0.3143 0.2096 0.1491 0.1924 0.1398 0.2738

Health 0.5035 0.5157 0.5289 0.1609 0.1453 0.1128 0.3772 0.3923 0.4128

Reference 0.4224 0.4267 0.4214 0.3368 0.0410 0.1072 0.1055 0.0372 0.4439

Science 0.2386 0.2305 0.2807 0.0998 0.0411 0.0691 0.0728 0.0124 0.2264

Social Science 0.5262 0.5186 0.5268 0.0594 0.1761 0.0000 0.3100 0.3819 0.5139

Society Culture 0.3343 0.3281 0.4140 0.0300 0.2466 0.0732 0.2594 0.1896 0.4184

Average 0.4442 0.4463 0.4726 0.3147 0.3179 0.2230 0.3685 0.3503 0.4790

Rank 4 3 2 8 7 9 5 6 1

Table 6.78: Performance of MLFLD and MLFLD-MAXP (TrTe) for Macro-F1 (↑) using
Hamming distance

Dataset BR LP CC RAkEL BRkNN BPMLL MLkNN MLFLD MAXP

Emotions 0.4294 0.4563 0.4680 0.5063 0.5909 0.6090 0.5880 0.6275 0.6273

Scene 0.6209 0.5938 0.6280 0.6388 0.6285 0.5697 0.7156 0.7400 0.7569

Image 0.4930 0.4078 0.4721 0.4665 0.5666 0.2211 0.5904 0.6104 0.6202

Yeast 0.3645 0.3498 0.3832 0.2482 0.3605 0.4274 0.3444 0.3887 0.3891

Arts Humanity 0.1845 0.1358 0.1853 0.0706 0.0208 0.1044 0.0343 0.0176 0.0583

Business Eco. 0.2263 0.1448 0.2185 0.1575 0.1281 0.1365 0.1817 NaN NaN

Education 0.1855 0.1348 0.1842 0.0574 0.1400 0.1335 0.1421 NaN NaN

Entertainment 0.2241 0.2139 0.2240 0.1635 0.0649 0.1130 0.1271 0.1031 0.1370

Health 0.2955 0.2567 0.3007 0.1790 0.1077 0.1404 0.1567 NaN NaN

Reference 0.1978 0.1695 0.1942 0.1085 0.0673 0.1185 0.0907 NaN NaN

Science 0.1407 0.0897 0.1513 0.0538 0.0179 0.0633 0.0408 0.0072 0.0407

Social Science 0.2227 0.1526 0.2035 0.0950 0.0890 0.0513 0.1175 NaN NaN

Society Culture 0.1327 0.1099 0.1317 0.0513 0.0673 0.0949 0.0714 0.0343 0.0608

Average 0.2860 0.2473 0.2881 0.2151 0.2192 0.2141 0.2462 0.3161 0.3363

Rank 4 5 3 8 7 9 6 2 1
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Table 6.79: Performance of MLFLD and MLFLD-MAXP (TrTe) for Micro-F1 (↑) using
Hamming distance

Dataset BR LP CC RAkEL BRkNN BPMLL MLkNN MLFLD MAXP

Emotions 0.4356 0.4835 0.4911 0.5119 0.6104 0.6276 0.6278 0.6472 0.6483

Scene 0.6132 0.5870 0.6185 0.6290 0.6380 0.5405 0.7156 0.7387 0.7502

Image 0.6941 0.5459 0.6273 0.5856 0.7048 0.3361 0.7166 0.7412 0.7426

Yeast 0.5461 0.5141 0.5414 0.4773 0.6193 0.6291 0.6303 0.6144 0.6152

Arts Humanity 0.3131 0.2693 0.3297 0.1722 0.0580 0.1249 0.0480 0.0373 0.2026

Business Eco. 0.6639 0.6244 0.6614 0.6486 0.6895 0.1736 0.6990 0.6739 0.6747

Education 0.3506 0.2753 0.3504 0.2384 0.2336 0.1253 0.2541 0.0934 0.2752

Entertainment 0.4023 0.3815 0.4041 0.3654 0.2020 0.1683 0.2696 0.1929 0.2780

Health 0.5343 0.4909 0.5353 0.2374 0.1725 0.1604 0.4033 0.3834 0.3921

Reference 0.4780 0.4057 0.4752 0.4102 0.0408 0.1267 0.1652 0.0645 0.4388

Science 0.2876 0.2154 0.2923 0.1396 0.0599 0.0815 0.1063 0.0183 0.2124

Social Science 0.5424 0.4693 0.5399 0.0943 0.2487 0.0000 0.3865 0.4244 0.4822

Society Culture 0.3482 0.2975 0.3821 0.0521 0.2825 0.1235 0.2896 0.2207 0.3826

Average 0.4776 0.4277 0.4807 0.3509 0.3508 0.2475 0.4086 0.3731 0.4688

Rank 2 4 1 7 8 9 5 6 3

Table 6.80: Summary of MLFLD and MLFLD-MAXP performance (TrTe) using Ham-
ming distance

Metric BR LP CC RAkEL BRkNN BPMLL MLkNN MLFLD MAXP

HamLoss 0.0999 0.1183 0.1058 0.1024 0.0898 0.4077 0.0769 0.0804 0.0855

RankLoss 0.2259 0.3938 0.2298 0.4146 0.1962 0.3214 0.1081 0.1242 0.1242

OneError 0.4776 0.5704 0.4732 0.6103 0.5323 0.8181 0.3930 0.4578 0.4578

Coverage 6.8052 11.7465 6.7022 13.2459 6.6902 9.4685 3.4687 4.1012 4.1012

AvgPrec 0.6018 0.4793 0.6028 0.4259 0.5716 0.3137 0.6933 0.6394 0.6394

Accuracy 0.3947 0.4065 0.4288 0.2802 0.2915 0.1663 0.3398 0.3232 0.4439

SubAcc 0.2598 0.2997 0.3094 0.1875 0.2164 0.0516 0.2548 0.2442 0.3440

Ex-F1 0.4442 0.4463 0.4726 0.3147 0.3179 0.2230 0.3685 0.3503 0.4790

Macro-F1 0.2860 0.2473 0.2881 0.2151 0.2192 0.2141 0.2462 0.3161 0.3363

Micro-F1 0.4776 0.4277 0.4807 0.3509 0.3508 0.2475 0.4086 0.3731 0.4688

Avg Rank 4.4 5.6 3.6 7.9 6 8.6 3.1 3.6 1.8

#Wins 0 0 1 0 0 0 5 0 4

Observations: From Table 6.80 and Table 6.81, MLFLD-MAXP performance is

improved in terms of average rank over all the measures though it shows only 4 wins over all

the metrics. MLkNN got avg rank 3.1, which is much higher than that of MLFLD-MAXP

though it shows 5 wins. Avg rank of MLFLD is twice than of MLFLD-MAXP. It shares

avg rank with CC. To summarize,
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Table 6.81: Comparison of MLFLD and MLFLD-MAXP Performance (train-test) with
Hamming distance
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� MLFLD-MAXP got rank 1 for subset accuracy with 11% and 35% improvement over

CC and MLkNN, respectively, and improvement for 8 datasets. MLFLD got position

6 with an enhancement for two datasets individually.

� It outperformed for accuracy with 3% and 30% improvement w.r.t. CC and MLkNN,

respectively showing improvement for five datasets.

� It outperformed for Ex-F1 with 1% and 30% improvement w.r.t. CC and MLkNN,

respectively showing improvement for five datasets.

� MLFLD got rank 6 for accuracy, subset accuracy, micro-F1, and ex-F1.

� MLFLD-MAXP is better among others for macro-F than micro-F, indicating more

influenced by rare labels as compared to MLFLD.

� Both proposed algorithms have shown fewer misclassifications than others except

MLkNN.

� Both proposed algorithms are similar for one err, rank loss, avg precision, coverage,

and defeated other algorithms except MLkNN.

Few observations noted for different behaviors of yahoo datasets:

� All Yahoo datasets have a minimal density between 0.03-0.1 approx.

� %outlier is comparatively more in Scene, Image, Business, Education, Reference,

Society, except Emotions and Yeast, both having cardinality and density more than

others. For these datasets, MLFLD-MAXP has shown maximum subset accuracy,

better accuracy, and ex-F1.

� Scene and Image have less MLE but more outliers.

� Though Business has a more significant skew, it also has larger Ex/Label.

� %Skew (grey) line shows opposite behavior to that of %Ex/Label (orange) line. That

is, for less skew, %Ex/label is more and vice-versa, as shown in Figure 5.3 of chapter

5.

� %Skew (grey) line shows similar behavior to that of %Ex/Label (orange) line. That

is, for less skew, %Ex/label is also less and vice-versa, as shown in Figure 5.4 of

chapter 5.
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6.3.4 Effect of distance variation for feature similarity on MLFLD and

MLFLD-MAXP using Hamming distance for label dissimilarity

How the performance of proposed algorithms gets affected by distance variation

for feature similarity on train-test datasets, is examined in this section from Table 6.82 to

6.91.

Table 6.82: Effect of distance variation on Hamming Loss (↓) using Hamming distance
and TrTe

Dataset MLkNN
MLFLD MLFLD-MAXP

Euclidean Manhattan Minkowski Euclidean Manhattan Minkowski

Emotions 0.2162 0.2195 0.2351 0.2277 0.2211 0.2351 0.2277

Scene 0.0962 0.0863 0.0858 0.0868 0.0886 0.0907 0.0878

Image 0.1147 0.1127 0.1110 0.1070 0.1160 0.1160 0.1057

Yeast 0.2008 0.2072 0.2021 0.2109 0.2072 0.2021 0.2107

Arts Humanity 0.0612 0.0628 0.0630 0.0656 0.0810 0.0816 0.0818

Business Eco. 0.0269 0.0285 0.0289 0.0302 0.0285 0.0289 0.0287

Education 0.0387 0.0465 0.0463 0.0443 0.0558 0.0556 0.0552

Entertainment 0.0604 0.0722 0.0658 0.0650 0.0847 0.0843 0.0835

Health 0.0458 0.0512 0.0518 0.0505 0.0519 0.0524 0.0507

Reference 0.0314 0.0354 0.0353 0.0342 0.0371 0.0370 0.0500

Science 0.0325 0.0358 0.0358 0.0363 0.0478 0.0480 0.0494

Social Science 0.0218 0.0287 0.0289 0.0300 0.0309 0.0313 0.0327

Society Culture 0.0537 0.0585 0.0586 0.0597 0.0614 0.0613 0.0622

Average 0.0769 0.0804 0.0806 0.0806 0.0855 0.0865 0.0866

Rank 1 2 3 3 5 6 7
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Table 6.83: Effect of distance variation on Ranking Loss (↓) using Hamming distance
and TrTe

Dataset MLkNN
MLFLD MLFLD-MAXP

Euclidean Manhattan Minkowski Euclidean Manhattan Minkowski

Emotions 0.1781 0.1570 0.1677 0.1838 0.1570 0.1677 0.1838

Scene 0.0930 0.0830 0.0843 0.0799 0.0830 0.0843 0.0799

Image 0.1154 0.0888 0.0900 0.0840 0.0888 0.0900 0.0840

Yeast 0.1766 0.1839 0.1806 0.1823 0.1839 0.1806 0.1823

Arts Humanity 0.1514 0.1707 0.1704 0.1775 0.1707 0.1704 0.1775

Business Eco. 0.0373 0.0454 0.0458 0.0474 0.0454 0.0458 0.0474

Education 0.0800 0.1112 0.1085 0.1095 0.1112 0.1085 0.1095

Entertainment 0.1151 0.1735 0.1777 0.1462 0.1735 0.1777 0.1462

Health 0.0605 0.0788 0.0792 0.0776 0.0788 0.0792 0.0776

Reference 0.0919 0.1367 0.1378 0.1379 0.1367 0.1378 0.1379

Science 0.1167 0.1551 0.1532 0.1596 0.1551 0.1532 0.1596

Social Science 0.0561 0.0767 0.0767 0.0770 0.0767 0.0767 0.0770

Society Culture 0.1338 0.1543 0.1541 0.1574 0.1543 0.1541 0.1574

Average 0.1081 0.1242 0.1251 0.1246 0.1242 0.1251 0.1246

Rank 1 2 6 4 2 6 4

Table 6.84: Effect of distance variation on One Error (↓) using Hamming distance and
TrTe

Dataset MLkNN
MLFLD MLFLD-MAXP

Euclidean Manhattan Minkowski Euclidean Manhattan Minkowski

Emotions 0.3218 0.2970 0.3267 0.3267 0.2970 0.3267 0.3267

Scene 0.2425 0.2191 0.2283 0.2191 0.2191 0.2283 0.2191

Image 0.2517 0.2183 0.2167 0.1950 0.2183 0.2167 0.1950

Yeast 0.2519 0.2835 0.2748 0.2672 0.2835 0.2748 0.2672

Arts Humanity 0.6330 0.7323 0.7397 0.7403 0.7323 0.7397 0.7403

Business Eco. 0.1213 0.1343 0.1357 0.1370 0.1343 0.1357 0.1370

Education 0.5207 0.6710 0.6710 0.6807 0.6710 0.6710 0.6807

Entertainment 0.5300 0.6897 0.6890 0.6747 0.6897 0.6890 0.6747

Health 0.4190 0.5070 0.5147 0.4773 0.5070 0.5147 0.4773

Reference 0.4730 0.5227 0.5223 0.7373 0.5227 0.5223 0.7373

Science 0.5810 0.7423 0.7470 0.7750 0.7423 0.7470 0.7750

Social Science 0.3270 0.4467 0.4543 0.4930 0.4467 0.4543 0.4930

Society Culture 0.4357 0.4870 0.4857 0.4973 0.4870 0.4857 0.4973

Average 0.3930 0.4578 0.4620 0.4785 0.4578 0.4620 0.4785

Rank 1 2 4 6 2 4 6
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Table 6.85: Effect of distance variation on Coverage (↓) using Hamming distance and
TrTe

Dataset MLkNN
MLFLD MLFLD-MAXP

Euclidean Manhattan Minkowski Euclidean Manhattan Minkowski

Emotions 1.9356 1.8119 1.8515 1.9653 1.8119 1.8515 1.9653

Scene 0.5661 0.5184 0.5268 0.5033 0.5184 0.5268 0.5033

Image 0.6083 0.5000 0.5067 0.4833 0.5000 0.5067 0.4833

Yeast 6.4318 6.5540 6.5213 6.5453 6.5540 6.5213 6.5453

Arts Humanity 5.4313 5.9870 5.9513 6.1230 5.9870 5.9513 6.1230

Business Eco. 2.1840 2.4683 2.4873 2.5450 2.4683 2.4873 2.5450

Education 3.4973 4.5247 4.4843 4.5013 4.5247 4.4843 4.5013

Entertainment 3.1467 4.3117 4.4050 3.7467 4.3117 4.4050 3.7467

Health 3.3043 4.0317 3.9680 3.9573 4.0317 3.9680 3.9573

Reference 3.5420 5.0580 5.1023 5.0667 5.0580 5.1023 5.0667

Science 6.0470 7.6283 7.5603 7.8150 7.6283 7.5603 7.8150

Social Science 3.0340 3.9590 3.9603 3.9847 3.9590 3.9603 3.9847

Society Culture 5.3653 5.9630 5.9663 6.0060 5.9630 5.9663 6.0060

Average 3.4687 4.1012 4.0993 4.0956 4.1012 4.0993 4.0956

Rank 1 6 4 2 6 4 2

Table 6.86: Effect of distance variation on Average Precision (↑) using Hamming distance
and TrTe

Dataset MLkNN
MLFLD MLFLD-MAXP

Euclidean Manhattan Minkowski Euclidean Manhattan Minkowski

Emotions 0.7810 0.8024 0.7887 0.7746 0.8024 0.7887 0.7746

Scene 0.8511 0.8653 0.8605 0.8672 0.8653 0.8605 0.8672

Image 0.8456 0.8718 0.8717 0.8823 0.8718 0.8717 0.8823

Yeast 0.7505 0.7396 0.7443 0.7431 0.7396 0.7443 0.7431

Arts Humanity 0.5097 0.4459 0.4450 0.4316 0.4459 0.4450 0.4316

Business Eco. 0.8798 0.8657 0.8642 0.8560 0.8657 0.8642 0.8560

Education 0.5993 0.4806 0.4846 0.4754 0.4806 0.4846 0.4754

Entertainment 0.6013 0.4652 0.4651 0.4987 0.4652 0.4651 0.4987

Health 0.6817 0.6055 0.6074 0.6264 0.6055 0.6074 0.6264

Reference 0.6194 0.5445 0.5444 0.4451 0.5445 0.5444 0.4451

Science 0.5324 0.4019 0.4053 0.3818 0.4019 0.4053 0.3818

Social Science 0.7481 0.6581 0.6554 0.6356 0.6581 0.6554 0.6356

Society Culture 0.6128 0.5651 0.5668 0.5548 0.5651 0.5668 0.5548

Average 0.6933 0.6394 0.6387 0.6287 0.6394 0.6387 0.6287

Rank 1 2 4 6 2 4 6
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Table 6.87: Effect of distance variation on Accuracy (↑) using Hamming distance and
TrTe

Dataset MLkNN
MLFLD MLFLD-MAXP

Euclidean Manhattan Minkowski Euclidean Manhattan Minkowski

Emotions 0.4818 0.5136 0.4979 0.5173 0.5202 0.5054 0.5289

Scene 0.6597 0.6749 0.6732 0.6644 0.7389 0.7317 0.7409

Image 0.6492 0.7008 0.7044 0.6936 0.7292 0.7286 0.7461

Yeast 0.4998 0.4802 0.5108 0.4820 0.4821 0.5108 0.4843

Arts Humanity 0.0331 0.0262 0.0306 0.0673 0.2058 0.2007 0.1933

Business Eco. 0.6967 0.6813 0.6773 0.6289 0.6825 0.6773 0.6802

Education 0.1560 0.0433 0.0366 0.0221 0.2636 0.2679 0.2475

Entertainment 0.1862 0.1340 0.1014 0.0516 0.2572 0.2559 0.2679

Health 0.3390 0.3533 0.3515 0.2506 0.3714 0.3683 0.3948

Reference 0.1032 0.0358 0.0319 0.1954 0.4280 0.4285 0.2364

Science 0.0695 0.0120 0.0075 0.0115 0.2141 0.2104 0.1831

Social Science 0.2996 0.3686 0.3632 0.2299 0.4938 0.4839 0.4530

Society Culture 0.2431 0.1770 0.1622 0.1038 0.3833 0.3849 0.3744

Average 0.3398 0.3232 0.3191 0.3014 0.4439 0.4426 0.4254

Rank 4 5 6 7 1 2 3

Table 6.88: Effect of distance variation on Subset Accuracy (↑) using Hamming distance
and TrTe

Dataset MLkNN
MLFLD MLFLD-MAXP

Euclidean Manhattan Minkowski Euclidean Manhattan Minkowski

Emotions 0.2178 0.2574 0.2228 0.2574 0.2574 0.2228 0.2624

Scene 0.6012 0.6279 0.6246 0.6187 0.6890 0.6798 0.6898

Image 0.5983 0.6350 0.6417 0.6350 0.6617 0.6633 0.6800

Yeast 0.1647 0.1810 0.1788 0.1887 0.1810 0.1788 0.1887

Arts Humanity 0.0277 0.0223 0.0263 0.0570 0.1643 0.1607 0.1470

Business Eco. 0.5353 0.5357 0.5213 0.4957 0.5363 0.5213 0.5360

Education 0.1310 0.0293 0.0247 0.0130 0.2117 0.2197 0.1927

Entertainment 0.1687 0.1157 0.0887 0.0447 0.2097 0.2103 0.2227

Health 0.2403 0.2517 0.2493 0.1913 0.2637 0.2610 0.3013

Reference 0.0963 0.0313 0.0280 0.1783 0.3820 0.3827 0.2120

Science 0.0603 0.0110 0.0070 0.0090 0.1827 0.1797 0.1530

Social Science 0.2700 0.3313 0.3257 0.2137 0.4380 0.4267 0.4080

Society Culture 0.2010 0.1450 0.1333 0.0893 0.2947 0.2967 0.2867

Average 0.2548 0.2442 0.2363 0.2301 0.3440 0.3387 0.3293

Rank 4 5 6 7 1 2 3

149



Table 6.89: Effect of distance variation on Ex-F1 (↑) using Hamming distance and TrTe

Dataset MLkNN
MLFLD MLFLD-MAXP

Euclidean Manhattan Minkowski Euclidean Manhattan Minkowski

Emotions 0.5662 0.5954 0.5843 0.5985 0.6045 0.5942 0.6126

Scene 0.6793 0.6906 0.6895 0.6798 0.7556 0.7492 0.7581

Image 0.6667 0.7233 0.7261 0.7133 0.7522 0.7511 0.7683

Yeast 0.6067 0.5805 0.6168 0.5806 0.5835 0.6168 0.5845

Arts Humanity 0.0352 0.0277 0.0322 0.0713 0.2226 0.2169 0.2118

Business Eco. 0.7546 0.7357 0.7344 0.6791 0.7370 0.7344 0.7345

Education 0.1647 0.0481 0.0403 0.0252 0.2828 0.2858 0.2683

Entertainment 0.1924 0.1398 0.1052 0.0538 0.2738 0.2720 0.2844

Health 0.3772 0.3923 0.3909 0.2735 0.4128 0.4097 0.4316

Reference 0.1055 0.0372 0.0332 0.2014 0.4439 0.4443 0.2450

Science 0.0728 0.0124 0.0077 0.0125 0.2264 0.2224 0.1948

Social Science 0.3100 0.3819 0.3766 0.2358 0.5139 0.5045 0.4693

Society Culture 0.2594 0.1896 0.1736 0.1096 0.4184 0.4198 0.4091

Average 0.3685 0.3503 0.3470 0.3257 0.4790 0.4785 0.4594

Rank 4 5 6 7 1 2 3

Table 6.90: Effect of distance variation on Macro-F1 (↑) using Hamming distance and
TrTe

Dataset MLkNN
MLFLD MLFLD-MAXP

Euclidean Manhattan Minkowski Euclidean Manhattan Minkowski

Emotions 0.5880 0.6275 0.5954 0.6489 0.6273 0.5989 0.6509

Scene 0.7156 0.7400 0.7407 0.7341 0.7569 0.7530 0.7601

Image 0.5904 0.6104 0.6248 0.6048 0.6202 0.6243 0.6218

Yeast 0.3444 0.3887 0.3987 0.3922 0.3891 0.3987 0.3924

Arts Humanity 0.0343 0.0176 0.0175 0.0353 0.0583 0.0544 0.0645

Business Eco. 0.1817 NaN NaN NaN NaN NaN NaN

Education 0.1421 NaN NaN NaN NaN NaN NaN

Entertainment 0.1271 0.1031 0.0960 0.0698 0.1370 0.1395 0.1271

Health 0.1567 NaN NaN NaN NaN NaN NaN

Reference 0.0907 NaN NaN NaN NaN NaN NaN

Science 0.0408 0.0072 0.0046 0.0055 0.0407 0.0397 0.0326

Social Science 0.1175 NaN NaN NaN NaN NaN NaN

Society Culture 0.0714 0.0343 0.0302 0.0210 0.0608 0.0488 0.0533

Average 0.2462 0.3161 0.3135 0.3140 0.3363 0.3322 0.3378

Rank 7 4 6 5 2 3 1
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Table 6.91: Effect of distance variation on Micro-F1 (↑) using Hamming distance and
TrTe

Dataset MLkNN
MLFLD MLFLD-MAXP

Euclidean Manhattan Minkowski Euclidean Manhattan Minkowski

Emotions 0.6278 0.6472 0.6265 0.6480 0.6483 0.6294 0.6515

Scene 0.7156 0.7387 0.7394 0.7341 0.7502 0.7444 0.7526

Image 0.7166 0.7412 0.7429 0.7438 0.7426 0.7407 0.7600

Yeast 0.6303 0.6144 0.6415 0.6125 0.6152 0.6415 0.6137

Arts Humanity 0.0480 0.0373 0.0425 0.0906 0.2026 0.1971 0.1990

Business Eco. 0.6990 0.6739 0.6764 0.6415 0.6747 0.6764 0.6710

Education 0.2541 0.0934 0.0855 0.0506 0.2752 0.2775 0.2637

Entertainment 0.2696 0.1929 0.1705 0.1002 0.2780 0.2770 0.2808

Health 0.4033 0.3834 0.3796 0.2997 0.3921 0.3878 0.4000

Reference 0.1652 0.0645 0.0581 0.2754 0.4388 0.4392 0.2426

Science 0.1063 0.0183 0.0115 0.0198 0.2124 0.2086 0.1856

Social Science 0.3865 0.4244 0.4203 0.2994 0.4822 0.4752 0.4431

Society Culture 0.2896 0.2207 0.2055 0.1346 0.3826 0.3836 0.3746

Average 0.4086 0.3731 0.3692 0.3577 0.4688 0.4676 0.4491

Rank 4 5 6 7 1 2 3

Table 6.92: Summary of effect of distance variation on MLFLD and MLFLD-MAXP
performance using Hamming distance and TrTe

MLFLD MLFLD-MAXP
Dataset MLkNN

Euclidean Manhattan Minkowski Euclidean Manhattan Minkowski

HamLoss 0.0769 0.0804 0.0806 0.0806 0.0855 0.0865 0.0866

RankLoss 0.1081 0.1242 0.1251 0.1246 0.1242 0.1251 0.1246

OneError 0.3930 0.4578 0.4620 0.4785 0.4578 0.4620 0.4785

Coverage 3.4687 4.1012 4.0993 4.0956 4.1012 4.0993 4.0956

AvgPrec 0.6933 0.6394 0.6387 0.6287 0.6394 0.6387 0.6287

Accuracy 0.3398 0.3232 0.3191 0.3014 0.4439 0.4426 0.4254

SubAcc 0.2548 0.2442 0.2363 0.2301 0.3440 0.3387 0.3293

Ex-F1 0.3685 0.3503 0.3470 0.3257 0.4790 0.4785 0.4594

Macro-F1 0.2462 0.3161 0.3135 0.314 0.3363 0.3322 0.3378

Micro-F1 0.4086 0.3731 0.3692 0.3577 0.4688 0.4676 0.4491

ExecTime 6 28 31 107 28 28 102

Avg Rank 2.8 3.8 5.1 5.4 2.3 3.5 3.8

#Wins 5 0 0 0 4 0 1

Observations: From Table 6.92, average rank of MLFLD-MAXP using Euclidean

and Hamming distances is found better among all the seven experiments, though it wins
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only four times as compared to MLkNN that wins five times. But it should be noted that

the average rank of MLFLD-MAXP using Euclidean has exceeded that of MLkNN. To

summarize,

� Performance improvement for both accuracy and Ex-F1 by 3 MLFLD-MAXP varia-

tions is approx. 25-37% while it is 10-15% for label-based measures.

� For two accuracy and three F measures, three distance variations of MLFLD-MAXP

beat MLkNN while MLFLD could not. MLFLD-MAXP with Euclidean, Manhattan,

and Minkowski functioned at rank 1, 2, and 3 respectively for these five measures

with approx. 10-15% rise.

� The performance of MLFLD is very close to that of MLkNN. MLFLD-Euclidean

pair have done minimal misclassification among six variations of proposed algorithms.

(MLFLD, Manhattan) and (MLFLD-MAXP, Minkowski) pairs have performed better

for Scene and Image respectively while both proposed algorithms could not exceed

MLkNN for remaining datasets.

� The performance of MLFLD is the same as that of MLFLD-MAXP for coverage,

one error, rank loss, and avg precision. Both functioned better for these metrics

with Emotions, Image, and Scene, whereas they could not work well for remaining

datasets. The reason may be that

– The percentage of outliers is substantial for Scene (72) and Image (86) as com-

pared to the remaining 11 datasets, as shown in Table 5.2 and 5.4.

– No. of unique label sets is also more in all datasets except Scene and Image

having 0.6% and 1% unique label sets, respectively, as shown in Table 5.1 and

5.3 from Chapter 5.

� Use of Minkowski distance requires more computation time among all variations.

6.4 Performance of proposed algorithms after outlier removal

An outlier is a value that lies away by threshold 3.0 (± 1.5) from the mean. Such

values affect the predictive performance of a classifier. They can be removed from datasets

using Weka and Meka [73] [75].
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Experimentation is performed on datasets after outlier removal, and performance

is analyzed for cross-validation as well as train-test datasets. It is perceived that among all

the contesting algorithms, MLkNN is the best contestant. Hence in this section performance

of proposed algorithms is compared with only MLkNN.

6.4.1 Performance of proposed algorithms with cross-validation after out-

lier removal

Table 6.93: Effect of outlier removal on MLFLD and MLFLD-MAXP using cross-
validation

(a) Hamming loss (_) (b) Ranking loss (_)

Dataset MLkNN MLFLD MAXP Dataset MLkNN MLFLD MAXP

Emotions 0.1878 0.1115 0.1104 Emotions 0.1582 0.0502 0.0502

Scene 0.1052 0.0914 0.0877 Scene 0.0946 0.0669 0.0669

Image 0.1919 0.1444 0.1474 Image 0.2089 0.1537 0.1537

Yeast 0.1967 0.1522 0.1522 Yeast 0.1638 0.0971 0.0971

CAL500 0.1394 0.1324 0.1324 CAL500 0.1837 0.1696 0.1696

Average 0.1642 0.1264 0.1260 Average 0.1618 0.1075 0.1075

Rank 3 2 1 Rank 3 1 1

(c) One Error (_) (d) Coverage (_)

Dataset MLkNN MLFLD MAXP Dataset MLkNN MLFLD MAXP

Emotions 0.2599 0.1042 0.1042 Emotions 1.7959 1.1792 1.1792

Scene 0.2910 0.2302 0.2302 Scene 0.5612 0.4154 0.4154

Image 0.3765 0.2815 0.2815 Image 1.0545 0.8259 0.8259

Yeast 0.2222 0.1147 0.1147 Yeast 6.2599 5.1735 5.1735

CAL500 0.1095 0.0597 0.0597 CAL500 131.0571 130.0358 130.0358

Average 0.2518 0.1581 0.1581 Average 28.1457 27.5260 27.5260

Rank 3 1 1 Rank 3 1 1
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Table 6.94: Effect of outlier removal on MLFLD and MLFLD-MAXP using cross-
validation

(e) Average Precision (^) (f) Accuracy (^)

Dataset MLkNN MLFLD MAXP Dataset MLkNN MLFLD MAXP

Emotions 0.8073 0.9278 0.9278 Emotions 0.5665 0.7276 0.7380

Scene 0.8301 0.8700 0.8700 Scene 0.6060 0.6667 0.7407

Image 0.7568 0.8201 0.8201 Image 0.3937 0.5722 0.6630

Yeast 0.7696 0.8634 0.8634 Yeast 0.5058 0.6235 0.6236

CAL500 0.4946 0.5369 0.5369 CAL500 0.1936 0.2385 0.2385

Average 0.7317 0.8036 0.8036 Average 0.4531 0.5657 0.6008

Rank 3 1 1 Rank 3 2 1

(g) Subset Accuracy (^) (h) Ex-F1 (^)

Dataset MLkNN MLFLD MAXP Dataset MLkNN MLFLD MAXP

Emotions 0.3223 0.5083 0.5167 Emotions 0.6458 0.7948 0.8059

Scene 0.5701 0.6189 0.6907 Scene 0.6179 0.6826 0.7574

Image 0.3501 0.5148 0.5963 Image 0.4084 0.5920 0.6858

Yeast 0.1805 0.2806 0.2806 Yeast 0.6111 0.7206 0.7209

CAL500 0.0000 0.0000 0.0000 CAL500 0.3186 0.3781 0.3781

Average 0.2846 0.3845 0.4169 Average 0.5204 0.6336 0.6696

Rank 3 2 1 Rank 3 2 1

(i) Macro-F1 (^) (j) Micro-F1 (^)

Dataset MLkNN MLFLD MAXP Dataset MLkNN MLFLD MAXP

Emotions 0.6404 0.8166 0.8196 Emotions 0.6814 0.8220 0.8247

Scene 0.6336 0.6998 0.7397 Scene 0.6715 0.7225 0.7514

Image 0.4455 0.5961 0.6153 Image 0.4768 0.6414 0.6700

Yeast 0.3858 NaN NaN Yeast 0.6396 0.7403 0.7404

CAL500 0.1957 NaN NaN CAL500 0.3147 0.3831 0.3831

Average 0.4602 0.7042 0.7249 Average 0.5568 0.6619 0.6739

Rank 3 2 1 Rank 3 2 1
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Table 6.95: Summary of MLFLD and MLFLD-MAXP (CV) performance for checking
effect of outlier removal

Metric MLkNN MLFLD MLFLD-MAXP

HamLoss 0.1642 0.1264 0.1260

RankLoss 0.1618 0.1075 0.1075

OneError 0.2518 0.1581 0.1581

Coverage 28.1457 27.5260 27.5260

AvgPrec 0.7317 0.8036 0.8036

Accuracy 0.4531 0.5657 0.6008

SubAcc 0.2846 0.3845 0.4169

Ex-F1 0.5204 0.6336 0.6696

Macro-F1 0.4602 0.7042 0.7249

Micro-F1 0.5568 0.6619 0.6739

ExecTime 6 8 8

Avg rank 3.0 1.6 1.0

#Wins 0 4 10

After removing outliers, datasets are fed to three algorithms to be evaluated. In

this section, proposed algorithms are observed for Euclidean and Hamming distance for ten

folds shown in Table 6.93 and 6.95.

Observations: Summary Table 6.95 shows that after removing outliers from

datasets and applying cross-validation, both proposed algorithms have beaten competing

algorithm. MLFLD-MAXP has shown more growth than MLFLD.
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Table 6.96: Performance of proposed algorithms with cross-validation after Outlier re-
moval
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To summarize,

� Figures in Table 6.96(a)-(e) show that proposed algorithms have worked similarly for

the first 5 metrics, whereas MLFLD-MAXP has exceeded MLFLD for the remaining

5 metrics, as in Table 6.96(g)-(j).

� Previous sections have shown that MLFLD has always proved itself better than

MLFLD-MAXP for improvement in the hamming loss. Table 6.96(a) shows that

after outlier removal, MLFLD-MAXP seems to behave better in terms of hamming

loss.

� Both proposed algorithms have shown the same performance for one error, ranking

loss, coverage, and avg precision with 37, 33, 10, and 2 percent improvement over

MLkNN, respectively.

� Maximum improvement is seen for subset accuracy, that is 46% and 35%, whereas

32% and 24% for accuracy with MLFLD-MAXP and MLFLD, respectively.

� MLFLD-MAXP defeated MLFLD for ex-F1 and micro-F1 by (28, 21) and (21, 18)

percent, respectively. Both algorithms have enhanced compared to MLkNN for 3

datasets, but could not compute macro-F1 for 2 datasets.

� The execution time of all experiments is comparable.

6.4.2 Performance of proposed algorithms with train-test splits after

Outlier removal

In this section, evaluation carried out after outlier removal from train-test (TrTe)

splits are monitored for three algorithms shown in Table 6.97-6.99.
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Table 6.97: Effect of outlier removal on MLFLD and MLFLD-MAXP using TrTe

(a) Hamming loss (_) (b) Ranking loss (_)

Dataset MLkNN MLFLD MAXP Dataset MLkNN MLFLD MAXP

Emotions 0.2246 0.1341 0.1382 Emotions 0.1857 0.0844 0.0844

Scene 0.1275 0.1104 0.1156 Scene 0.1133 0.0951 0.0951

Image 0.1863 0.1649 0.1664 Image 0.2481 0.1858 0.1858

Yeast 0.1986 0.1549 0.1548 Yeast 0.1659 0.1012 0.1012

Arts Humanity 0.0580 0.0558 0.0471 Arts Humanity 0.0987 0.0543 0.0543

Business Eco. 0.0291 0.0159 0.0171 Business Eco. 0.0469 0.0438 0.0438

Education 0.0419 0.0458 0.0458 Education 0.0900 0.0716 0.0716

Entertainment 0.0643 0.0577 0.0697 Entertainment 0.1219 0.1058 0.1058

Health 0.0456 0.0326 0.0357 Health 0.0695 0.0545 0.0545

Reference 0.0296 0.0348 0.0363 Reference 0.0908 0.1301 0.1301

Science 0.0357 0.0357 0.0493 Science 0.1432 0.1574 0.1574

Social Science 0.0295 0.0263 0.0268 Social Science 0.0714 0.0666 0.0666

Society Culture 0.0547 0.0531 0.0551 Society Culture 0.1463 0.1227 0.1227

Average 0.0866 0.0709 0.0737 Average 0.1224 0.0979 0.0979

Rank 3 1 2 Rank 3 1 1

(c) One Error (_) (d) Coverage (_)

Dataset MLkNN MLFLD MAXP Dataset MLkNN MLFLD MAXP

Emotions 0.2988 0.1707 0.1707 Emotions 1.9756 1.4451 1.4451

Scene 0.3003 0.2972 0.2972 Scene 0.6749 0.5789 0.5789

Image 0.4427 0.3664 0.3664 Image 1.1069 0.8626 0.8626

Yeast 0.2456 0.1360 0.1360 Yeast 6.3406 5.2953 5.2953

Arts Humanity 0.4481 0.2808 0.2808 Arts Humanity 4.0149 2.6072 2.6072

Business Eco. 0.1415 0.0789 0.0789 Business Eco. 2.5865 2.5272 2.5272

Education 0.5871 0.5107 0.5107 Education 3.8607 3.1843 3.1843

Entertainment 0.5837 0.5244 0.5244 Entertainment 3.2906 2.8908 2.8908

Health 0.4580 0.2546 0.2546 Health 3.6281 3.1385 3.1385

Reference 0.4924 0.5178 0.5178 Reference 3.4295 4.7736 4.7736

Science 0.7236 0.7696 0.7696 Science 7.1862 7.7896 7.7896

Social Science 0.4497 0.3734 0.3734 Social Science 3.7175 3.6077 3.6077

Society Culture 0.4645 0.4041 0.4041 Society Culture 5.7378 5.0177 5.0177

Average 0.4335 0.3604 0.3604 Average 3.6577 3.3630 3.3630

Rank 3 1 1 Rank 3 1 1
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Table 6.98: Effect of outlier removal on MLFLD and MLFLD-MAXP using TrTe

(e) Average Precision (^) (f) Accuracy (^)

Dataset MLkNN MLFLD MAXP Dataset MLkNN MLFLD MAXP

Emotions 0.7874 0.8823 0.8823 Emotions 0.5173 0.6657 0.6768

Scene 0.8175 0.8301 0.8301 Scene 0.5341 0.5712 0.6625

Image 0.7075 0.7640 0.7640 Image 0.3677 0.4656 0.5954

Yeast 0.7618 0.8542 0.8542 Yeast 0.4992 0.6209 0.6212

Arts Humanity 0.6421 0.7710 0.7710 Arts Humanity 0.1350 0.2427 0.5299

Business Eco. 0.8625 0.8940 0.8940 Business Eco. 0.6823 0.7993 0.8189

Education 0.5492 0.6056 0.6056 Education 0.0945 0.3756 0.3756

Entertainment 0.5667 0.6160 0.6160 Entertainment 0.1268 0.1838 0.4028

Health 0.6461 0.7555 0.7555 Health 0.2637 0.4847 0.5491

Reference 0.6039 0.5495 0.5495 Reference 0.2246 0.0417 0.4356

Science 0.4244 0.3788 0.3788 Science 0.0173 0.0136 0.1893

Social Science 0.6701 0.7175 0.7175 Social Science 0.2109 0.3215 0.5565

Society Culture 0.5832 0.6227 0.6227 Society Culture 0.2805 0.3262 0.4277

Average 0.6633 0.7109 0.7109 Average 0.3041 0.3933 0.5263

Rank 3 1 1 Rank 3 2 1

(a) Subset Accuracy (^) (b) Ex-F1 (^)

Dataset MLkNN MLFLD MAXP Dataset MLkNN MLFLD MAXP

Emotions 0.2927 0.4451 0.4512 Emotions 0.5935 0.7311 0.7443

Scene 0.4861 0.5263 0.6130 Scene 0.5501 0.5862 0.6791

Image 0.3359 0.4275 0.5496 Image 0.3791 0.4796 0.6120

Yeast 0.1813 0.2895 0.2895 Yeast 0.6064 0.7174 0.7180

Arts Humanity 0.1016 0.1904 0.3839 Arts Humanity 0.1473 0.2629 0.5850

Business Eco. 0.5326 0.7013 0.7122 Business Eco. 0.7370 0.8284 0.8513

Education 0.0725 0.2865 0.2865 Education 0.1024 0.4091 0.4091

Entertainment 0.1157 0.1530 0.3485 Entertainment 0.1311 0.1956 0.4234

Health 0.1930 0.3817 0.3915 Health 0.2903 0.5243 0.6081

Reference 0.2134 0.0368 0.3928 Reference 0.2286 0.0434 0.4505

Science 0.0147 0.0118 0.1585 Science 0.0182 0.0141 0.2011

Social Science 0.1930 0.2868 0.4964 Social Science 0.2172 0.3339 0.5781

Society Culture 0.2284 0.2350 0.3093 Society Culture 0.3008 0.3621 0.4743

Average 0.2278 0.3055 0.4141 Average 0.3309 0.4222 0.5642

Rank 3 2 1 Rank 3 2 1
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Table 6.99: Effect of outlier removal on MLFLD and MLFLD-MAXP using TrTe

(c) Macro-F1 (^) (d) Micro-F1 (^)

Dataset MLkNN MLFLD MAXP Dataset MLkNN MLFLD MAXP

Emotions 0.6261 0.7875 0.7855 Emotions 0.6371 0.7836 0.7806

Scene 0.5265 0.6174 0.6740 Scene 0.6048 0.6503 0.6725

Image 0.5028 0.5897 0.5950 Image 0.4649 0.5537 0.6093

Yeast 0.3792 0.4961 0.4963 Yeast 0.6317 0.7339 0.7341

Arts Humanity 0.1286 NaN NaN Arts Humanity 0.2041 0.3103 0.5444

Business Eco. 0.1527 NaN NaN Business Eco. 0.6761 0.8286 0.8211

Education 0.2265 NaN NaN Education 0.1585 0.4089 0.4089

Entertainment 0.0819 0.1403 0.1788 Entertainment 0.1779 0.2824 0.3995

Health 0.2614 NaN NaN Health 0.3552 0.5599 0.5808

Reference 0.2251 NaN NaN Reference 0.3270 0.0757 0.4464

Science 0.0285 0.0227 0.0596 Science 0.0273 0.0226 0.1901

Social Science 0.1210 NaN NaN Social Science 0.2891 0.4202 0.5488

Society Culture 0.0622 0.0915 0.1023 Society Culture 0.3312 0.3932 0.4484

Average 0.2556 0.3922 0.4131 Average 0.3758 0.4633 0.5527

Rank 3 2 1 Rank 3 2 1

Table 6.97, 6.98 and 6.99 show that

� The time required by the proposed algorithms is almost twice than of MLkNN due to

label dissimilarity computation at the cost of performance enhancement for 9 metrics.

� For datasets with train-test splits, MLFLD has improved hamming loss with 18%

than MLFLD-MAXP with 14% compared to MLkNN.

� Proposed algorithms performed equally well for rank loss, one error, coverage, and

avg precision with 20, 16, 8, and 7 %improvement than MLkNN, respectively.

� More improvement is seen in subset accuracy and example-based accuracy by MLFLD-

MAXP by 81% and 73% than 34% and 29% improvement of MLFLD, respectively.
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Table 6.100: Summary of MLFLD and MLFLD-MAXP performance using TrTe for effect
of outlier removal

Metric MLkNN MLFLD MLFLD-MAXP

HamLoss 0.0866 0.0709 0.0737

RankLoss 0.1224 0.0979 0.0979

OneError 0.4335 0.3604 0.3604

Coverage 3.6577 3.3630 3.3630

AvgPrec 0.6633 0.7109 0.7109

Accuracy 0.3041 0.3933 0.5263

SubAcc 0.2278 0.3055 0.4141

Ex-F1 0.3309 0.4222 0.5642

Macro-F1 0.2556 0.3922 0.4131

Micro-F1 0.3758 0.4633 0.5527

ExecTime 5 11 11

Avg rank 3.0 1.5 1.1

#Wins 0 5 9

� MLFLD-MAXP has outperformed with all datasets for Ex-F1 and 11 datasets for

micro-F1 with 70% and 47% resp. MLFLD resulted in 27% and 23% growth resp.

Macro-F1 is increased for 6 out of 7 datasets while no computation for five datasets.

Observations: From Table 6.95 and 6.100, it is marked that proposed algorithms

are sensitive to outlier data present in datasets. After removing outliers, MLFLD-MAXP

has defeated contestant algorithm followed by MLFLD. From figures in Table 6.101, the

behavior of proposed algorithms is noticed identical for the first 5 metrics while better for

the last 5 metrics.
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Table 6.101: Performance of proposed algorithms with train-test splits after outlier
removal

162



6.5 Performance of proposed algorithms for large datasets

In all previous sections, comparatively smaller datasets are used. In this sec-

tion, proposed algorithms are evaluated on two large datasets, namely Cbmi09-bow and

Mediamill. As these datasets have 43907 examples, ten-fold cross-validation caused the

system to hang with the current configuration. Hence train-test (TrTe) splits are used for

experimentation.

From Table 5.4, both datasets show 89.6% MLE denoting large no. of examples

associated with multiple labels. They are the only datasets in this work that show 3.9%

ZLE, indicating zero label examples. That is the reason for NaN value for many measures.

Denominator results in zero when there is no relevant label. For example-based measures,

even if one example results in NaN, then corresponding measure results into NaN. Same

for label-based metrics.

6.5.1 Performance of MLFLD for large datasets

In this section, the functioning of proposed algorithm MLFLD is studied.

Euclidean distance is used for the computation of the feature similarity and Ham-

ming distance is used for the computation of the label dissimilarity.

The performance is shown is Table 6.102 and 6.103 for the ten metrics after eval-

uation.
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Table 6.102: Performance of MLFLD for large datasets

(a) Hamming loss (_)

Dataset BR LP CC RAkEL BRkNN BPMLL MLkNN MLFLD

Cbmi09-bow 0.0472 0.0544 0.0467 0.0434 0.0331 0.0638 0.0331 0.0336

Mediamill 0.0412 0.0494 0.0424 0.0409 0.0318 0.0645 0.0316 0.0317

Average 0.0442 0.0519 0.0446 0.0422 0.0325 0.0642 0.0324 0.0327

Rank 5 7 6 4 2 8 1 3

(b) Ranking loss (_)

Dataset BR LP CC RAkEL BRkNN BPMLL MLkNN MLFLD

Cbmi09-bow 0.2939 0.3865 0.2684 0.3487 0.0967 0.0633 0.0604 NaN

Mediamill 0.2142 0.3668 0.2116 0.3465 0.0853 0.0516 0.0533 NaN

Average 0.2541 0.3767 0.2400 0.3476 0.0910 0.0575 0.0569 NaN

Rank 5 7 4 6 3 2 1 -

(c) One Error (_)

Dataset BR LP CC RAkEL BRkNN BPMLL MLkNN MLFLD

Cbmi09-bow 0.5836 0.7697 0.3734 0.4300 0.2020 0.2375 0.2043 0.2032

Mediamill 0.5256 0.6951 0.3495 0.4236 0.1810 0.2205 0.1804 0.1809

Average 0.5546 0.7324 0.3615 0.4268 0.1915 0.2290 0.1924 0.1921

Rank 7 8 5 6 1 4 3 2

(d) Coverage (_)

Dataset BR LP CC RAkEL BRkNN BPMLL MLkNN MLFLD

Cbmi09-bow 69.7428 66.8468 61.7521 67.2632 31.4247 21.2520 20.1887 20.1426

Mediamill 58.7190 64.4715 53.4878 67.5235 28.8667 18.2272 18.8066 18.8340

Average 64.2309 65.6592 57.6200 67.3934 30.1457 19.7396 19.4977 19.4883

Rank 6 7 5 8 4 3 2 1

(e) Average Precision (^)

Dataset BR LP CC RAkEL BRkNN BPMLL MLkNN MLFLD

Cbmi09-bow 0.4116 0.2169 0.4549 0.2725 0.6547 0.6366 0.6738 NaN

Mediamill 0.4880 0.2670 0.5156 0.2833 0.6850 0.6782 0.7005 NaN

Average 0.4498 0.2420 0.4853 0.2779 0.6699 0.6574 0.6872 NaN

Rank 5 7 4 6 2 3 1 -
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Table 6.103: Performance of MLFLD for large datasets

(f) Accuracy (^)

Dataset BR LP CC RAkEL BRkNN BPMLL MLkNN MLFLD

Cbmi09-bow 0.2981 0.2690 0.3032 0.1866 0.3899 0.3139 0.4009 NaN

Mediamill 0.3477 0.3140 0.3545 0.2078 0.4176 0.3374 0.4200 NaN

Average 0.3229 0.2915 0.3289 0.1972 0.4038 0.3257 0.4105 NaN

Rank 5 6 3 7 2 4 1 -

(g) Subset Accuracy (^)

Dataset BR LP CC RAkEL BRkNN BPMLL MLkNN MLFLD

Cbmi09-bow 0.0169 0.0302 0.0447 0.0098 0.1032 0.0000 0.1013 0.1026

Mediamill 0.0339 0.0500 0.0661 0.0126 0.1125 0.0077 0.1074 0.1111

Average 0.0254 0.0401 0.0554 0.0112 0.1079 0.0039 0.1044 0.1069

Rank 6 5 4 7 1 8 3 2

(h) Ex-F1 (^)

Dataset BR LP CC RAkEL BRkNN BPMLL MLkNN MLFLD

Cbmi09-bow 0.4193 0.3729 0.4079 0.2857 0.4933 0.4542 0.5083 NaN

Mediamill 0.4706 0.4231 0.4648 0.3139 0.5263 0.4766 0.5317 NaN

Average 0.4450 0.3980 0.4364 0.2998 0.5098 0.4654 0.5200 NaN

Rank 4 6 5 7 2 3 1 -

(i) Macro-F1 (^)

Dataset BR LP CC RAkEL BRkNN BPMLL MLkNN MLFLD

Cbmi09-bow 0.0742 0.0696 0.0705 0.0242 0.0618 0.0600 0.0939 0.1146

Mediamill 0.1349 0.1102 0.1192 0.0361 0.1056 0.0933 0.1063 0.1128

Average 0.1046 0.0899 0.0949 0.0302 0.0837 0.0767 0.1001 0.1137

Rank 2 5 4 8 6 7 3 1

(j) Micro-F1 (^)

Dataset BR LP CC RAkEL BRkNN BPMLL MLkNN MLFLD

Cbmi09-bow 0.4343 0.3848 0.4247 0.2960 0.5033 0.4715 0.5184 0.5084

Mediamill 0.4882 0.4352 0.4824 0.3259 0.5415 0.4935 0.5442 0.5433

Average 0.4613 0.4100 0.4536 0.3110 0.5224 0.4825 0.5313 0.5259

Rank 5 7 6 8 3 4 1 2
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Table 6.104: Summary of MLFLD Performance for large datasets

(a) Summary of 10 metics

Metric BR LP CC RAkEL BRkNN BPMLL MLkNN MLFLD

HamLoss 0.0442 0.0519 0.0446 0.0422 0.0325 0.0642 0.0324 0.0327

RankLoss 0.2541 0.3767 0.2400 0.3476 0.0910 0.0575 0.0569 NaN

OneError 0.5546 0.7324 0.3615 0.4268 0.1915 0.2290 0.1924 0.1921

Coverage 64.2309 65.6592 57.6200 67.3934 30.1457 19.7396 19.4977 19.4883

AvgPrec 0.4498 0.2420 0.4853 0.2779 0.6699 0.6574 0.6872 NaN

Accuracy 0.3229 0.2915 0.3289 0.1972 0.4038 0.3257 0.4105 NaN

SubAcc 0.0254 0.0401 0.0554 0.0112 0.1079 0.0039 0.1044 0.1069

Ex-F1 0.4450 0.3980 0.4364 0.2998 0.5098 0.4654 0.5200 NaN

Macro-F1 0.1046 0.0899 0.0949 0.0302 0.0837 0.0767 0.1001 0.1137

Micro-F1 0.4613 0.4100 0.4536 0.3110 0.5224 0.4825 0.5313 0.5259

Avg Rank 5 6.5 4.6 6.7 2.6 4.6 1.7 1.8

#Wins 0 0 0 0 2 0 6 2

(b) Summary of 6 metrics without NaN

Metric BR LP CC RAkEL BRkNN BPMLL MLkNN MLFLD

HamLoss 0.0442 0.0519 0.0446 0.0422 0.0325 0.0642 0.0324 0.0327

OneError 0.5546 0.7324 0.3615 0.4268 0.1915 0.2290 0.1924 0.1921

Coverage 64.2309 65.6592 57.6200 67.3934 30.1457 19.7396 19.4977 19.4883

SubAcc 0.0254 0.0401 0.0554 0.0112 0.1079 0.0039 0.1044 0.1069

Macro F1 0.1046 0.0899 0.0949 0.0302 0.0837 0.0767 0.1001 0.1137

Micro F1 0.4613 0.4100 0.4536 0.3110 0.5224 0.4825 0.5313 0.5259

Avg Rank 5.2 6.5 5.0 6.8 2.8 5.7 2.2 1.8

#Wins 0 0 0 0 2 0 2 2

Observations: From Table 6.104(a), a conclusion could not be drawn as MLFLD

is not able to measure four metrics (shown by NaN). When compared using the remaining six

parameters, MLFLD had resulted in the smallest average rank, as shown in Table 6.104(b).

#Wins of all neighbour-based algorithms are the same. For macro-F and coverage, the

overall achievement is enhanced by 13% and 0.05% compared to MLkNN resp. For subset

accuracy, one error, and macro-F, MLFLD ranked second with a result near to MLkNN.

6.5.2 Performance of MLFLD-MAXP for large datasets

In this section, large datasets are used to evaluate MLFLD-MAXP shown in Table

6.105 and 6.106.
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Table 6.105: Performance of MLFLD-MAXP for large datasets

(a) Hamming loss (_)

Dataset BR LP CC RAkEL BRkNN BPMLL MLkNN MAXP

Cbmi09-bow 0.0472 0.0544 0.0467 0.0434 0.0331 0.0638 0.0331 0.0337

Mediamill 0.0412 0.0494 0.0424 0.0409 0.0318 0.0645 0.0316 0.0318

Average 0.0442 0.0519 0.0446 0.0422 0.0325 0.0642 0.0324 0.0328

Rank 5 7 6 4 2 8 1 3

(b) Ranking loss (_)

Dataset BR LP CC RAkEL BRkNN BPMLL MLkNN MAXP

Cbmi09-bow 0.2939 0.3865 0.2684 0.3487 0.0967 0.0633 0.0604 NaN

Mediamill 0.2142 0.3668 0.2116 0.3465 0.0853 0.0516 0.0533 NaN

Average 0.2541 0.3767 0.2400 0.3476 0.0910 0.0575 0.0569 NaN

Rank 5 7 4 6 3 2 1 NaN

(c) One Error (_)

Dataset BR LP CC RAkEL BRkNN BPMLL MLkNN MAXP

Cbmi09-bow 0.5836 0.7697 0.3734 0.4300 0.2020 0.2375 0.2043 0.2032

Mediamill 0.5256 0.6951 0.3495 0.4236 0.1810 0.2205 0.1804 0.1809

Average 0.5546 0.7324 0.3615 0.4268 0.1915 0.2290 0.1924 0.1921

Rank 7 8 5 6 1 4 3 2

(d) Coverage (_)

Dataset BR LP CC RAkEL BRkNN BPMLL MLkNN MAXP

Cbmi09-bow 69.7428 66.8468 61.7521 67.2632 31.4247 21.2520 20.1887 20.1426

Mediamill 58.7190 64.4715 53.4878 67.5235 28.8667 18.2272 18.8066 18.8340

Average 64.2309 65.6592 57.6200 67.3934 30.1457 19.7396 19.4977 19.4883

Rank 6 7 5 8 4 3 2 1

(e) Average Precision (^)

Dataset BR LP CC RAkEL BRkNN BPMLL MLkNN MAXP

Cbmi09-bow 0.4116 0.2169 0.4549 0.2725 0.6547 0.6366 0.6738 NaN

Mediamill 0.4880 0.2670 0.5156 0.2833 0.6850 0.6782 0.7005 NaN

Average 0.4498 0.2420 0.4853 0.2779 0.6699 0.6574 0.6872 NaN

Rank 5 7 4 6 2 3 1 -

(f) Accuracy (^)

Dataset BR LP CC RAkEL BRkNN BPMLL MLkNN MAXP

Cbmi09-bow 0.2981 0.2690 0.3032 0.1866 0.3899 0.3139 0.4009 0.3869

Mediamill 0.3477 0.3140 0.3545 0.2078 0.4176 0.3374 0.4200 0.4176

Average 0.3229 0.2915 0.3289 0.1972 0.4038 0.3257 0.4105 0.4023

Rank 6 7 4 8 2 5 1 3
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Table 6.106: Performance of MLFLD-MAXP for large datasets

(g) Subset Accuracy (^)

Dataset BR LP CC RAkEL BRkNN BPMLL MLkNN MAXP

Cbmi09-bow 0.0169 0.0302 0.0447 0.0098 0.1032 0.0000 0.1013 0.0939

Mediamill 0.0339 0.0500 0.0661 0.0126 0.1125 0.0077 0.1074 0.1050

Average 0.0254 0.0401 0.0554 0.0112 0.1079 0.0039 0.1044 0.0995

Rank 6 5 4 7 1 8 2 3

(h) Ex-F1 (^)

Dataset BR LP CC RAkEL BRkNN BPMLL MLkNN MAXP

Cbmi09-bow 0.4193 0.3729 0.4079 0.2857 0.4933 0.4542 0.5083 0.4947

Mediamill 0.4706 0.4231 0.4648 0.3139 0.5263 0.4766 0.5317 0.5298

Average 0.4450 0.3980 0.4364 0.2998 0.5098 0.4654 0.5200 0.5123

Rank 5 7 6 8 3 4 1 2

(i) Macro-F1 (^)

Dataset BR LP CC RAkEL BRkNN BPMLL MLkNN MAXP

Cbmi09-bow 0.0742 0.0696 0.0705 0.0242 0.0618 0.0600 0.0939 0.1155

Mediamill 0.1349 0.1102 0.1192 0.0361 0.1056 0.0933 0.1063 0.1148

Average 0.1046 0.0899 0.0949 0.0302 0.0837 0.0767 0.1001 0.1152

Rank 2 5 4 8 6 7 3 1

(j) Micro-F1 (^)

Dataset BR LP CC RAkEL BRkNN BPMLL MLkNN MAXP

Cbmi09-bow 0.4343 0.3848 0.4247 0.2960 0.5033 0.4715 0.5184 0.5118

Mediamill 0.4882 0.4352 0.4824 0.3259 0.5415 0.4935 0.5442 0.5450

Average 0.4613 0.4100 0.4536 0.3110 0.5224 0.4825 0.5313 0.5284

Rank 5 7 6 8 3 4 1 2

Observations: Metrics getting NaN value are removed from Table 6.107(a).

From the resulting Table 6.107(b), MLFLD-MAXP has functioned better than all com-

paring algorithms except MLkNN in terms of average rank. It stood at rank 2.1 among

eight algorithms. The functioning of MLFLD-MAXP is better than that of MLkNN for

three measures, namely macro-F1 with a 15% rise and coverage, one error with a small rise.

It is comparable to the remaining measures. For micro, ex-F1, and one error, the algorithm

is ranked second.
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Table 6.107: Summary of MLFLD-MAXP Performance for large datasets1

(a) Summary for 10 metrics

Metric BR LP CC RAkEL BRkNN BPMLL MLkNN MAXP

HamLoss 0.0442 0.0519 0.0446 0.0422 0.0325 0.0642 0.0324 0.0328

RankLoss 0.2541 0.3767 0.2400 0.3476 0.0910 0.0575 0.0569 NaN

OneError 0.5546 0.7324 0.3615 0.4268 0.1915 0.2290 0.1924 0.1921

Coverage 64.2309 65.6592 57.6200 67.3934 30.1457 19.7396 19.4977 19.4883

AvgPrec 0.4498 0.2420 0.4853 0.2779 0.6699 0.6574 0.6872 NaN

Accuracy 0.3229 0.2915 0.3289 0.1972 0.4038 0.3257 0.4105 0.4023

SubAcc 0.0254 0.0401 0.0554 0.0112 0.1079 0.0039 0.1044 0.0995

Ex-F1 0.4450 0.3980 0.4364 0.2998 0.5098 0.4654 0.5200 0.5123

Macro-F1 0.1046 0.0899 0.0949 0.0302 0.0837 0.0767 0.1001 0.1152

Micro-F1 0.4613 0.4100 0.4536 0.3110 0.5224 0.4825 0.5313 0.5284

Avg Rank 5.2 6.7 4.8 6.9 2.7 4.8 1.6 2.1

#Wins 0 0 0 0 2 0 6 2

(b) Summary for 8 metrics without NaN

Metric BR LP CC RAkEL BRkNN BPMLL MLkNN MAXP

HamLoss 0.0442 0.0519 0.0446 0.0422 0.0325 0.0642 0.0324 0.0328

OneError 0.5546 0.7324 0.3615 0.4268 0.1915 0.2290 0.1924 0.1921

Coverage 64.2309 65.6592 57.6200 67.3934 30.1457 19.7396 19.4977 19.4883

Accuracy 0.3229 0.2915 0.3289 0.1972 0.4038 0.3257 0.4105 0.4023

SubAcc 0.0254 0.0401 0.0554 0.0112 0.1079 0.0039 0.1044 0.0995

Ex-F1 0.4450 0.3980 0.4364 0.2998 0.5098 0.4654 0.5200 0.5123

Macro F1 0.1046 0.0899 0.0949 0.0302 0.0837 0.0767 0.1001 0.1152

Micro F1 0.4613 0.4100 0.4536 0.3110 0.5224 0.4825 0.5313 0.5284

Avg Rank 5.3 6.6 5.0 7.1 2.8 5.4 1.8 2.1

#Wins 0 0 0 0 2 0 4 2

6.5.3 Performance of MLFLD and MLFLD-MAXP for large datasets

Effect of applying both the proposed algorithms on large datasets is analyzed

in this section for ten parameters (Table 6.108 and 6.109). Cbmi09-bow and Mediamill

datasets have all the characteristics similar to each other except no. of outliers as shown

in Table 5.4. Prior has more outliers than later. Both have 43907 examples.
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Table 6.108: Performance of MLFLD and MLFLD-MAXP for large datasets

(a) Hamming loss (_)

Dataset BR LP CC RAkEL BRkNN BPMLL MLkNN MLFLD MAXP

Cbmi09-bow 0.0472 0.0544 0.0467 0.0434 0.0331 0.0638 0.0331 0.0336 0.0337

Mediamill 0.0412 0.0494 0.0424 0.0409 0.0318 0.0645 0.0316 0.0317 0.0318

Average 0.0442 0.0519 0.0446 0.0422 0.0325 0.0642 0.0324 0.0327 0.0328

Rank 6 8 7 5 2 9 1 3 4

(b) Ranking loss (_)

Dataset BR LP CC RAkEL BRkNN BPMLL MLkNN MLFLD MAXP

Cbmi09-bow 0.2939 0.3865 0.2684 0.3487 0.0967 0.0633 0.0604 NaN NaN

Mediamill 0.2142 0.3668 0.2116 0.3465 0.0853 0.0516 0.0533 NaN NaN

Average 0.2541 0.3767 0.2400 0.3476 0.0910 0.0575 0.0569 NaN NaN

Rank 5 7 4 6 3 2 1 NaN NaN

(c) One Error (_)

Dataset BR LP CC RAkEL BRkNN BPMLL MLkNN MLFLD MAXP

Cbmi09-bow 0.5836 0.7697 0.3734 0.4300 0.2020 0.2375 0.2043 0.2032 0.2032

Mediamill 0.5256 0.6951 0.3495 0.4236 0.1810 0.2205 0.1804 0.1809 0.1809

Average 0.5546 0.7324 0.3615 0.4268 0.1915 0.2290 0.1924 0.1921 0.1921

Rank 8 9 6 7 1 5 4 2 2

(d) Coverage (_)

Dataset BR LP CC RAkEL BRkNN BPMLL MLkNN MLFLD MAXP

Cbmi09-bow 69.7428 66.8468 61.7521 67.2632 31.4247 21.2520 20.1887 20.1426 20.1426

Mediamill 58.7190 64.4715 53.4878 67.5235 28.8667 18.2272 18.8066 18.8340 18.8340

Average 64.2309 65.6592 57.6200 67.3934 30.1457 19.7396 19.4977 19.4883 19.4883

Rank 7 8 6 9 5 4 3 1 1

(e) Average Precision (^)

Dataset BR LP CC RAkEL BRkNN BPMLL MLkNN MLFLD MAXP

Cbmi09-bow 0.4116 0.2169 0.4549 0.2725 0.6547 0.6366 0.6738 NaN NaN

Mediamill 0.4880 0.2670 0.5156 0.2833 0.6850 0.6782 0.7005 NaN NaN

Average 0.4498 0.2420 0.4853 0.2779 0.6699 0.6574 0.6872 NaN NaN

Rank 5 7 4 6 2 3 1 NaN NaN

(f) Accuracy (^)

Dataset BR LP CC RAkEL BRkNN BPMLL MLkNN MLFLD MAXP

Cbmi09-bow 0.2981 0.2690 0.3032 0.1866 0.3899 0.3139 0.4009 NaN 0.3869

Mediamill 0.3477 0.3140 0.3545 0.2078 0.4176 0.3374 0.4200 NaN 0.4176

Average 0.3229 0.2915 0.3289 0.1972 0.4038 0.3257 0.4105 NaN 0.4023

Rank 6 7 4 8 2 5 1 NaN 3
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Table 6.109: Performance of MLFLD and MLFLD-MAXP for large datasets

(g) Subset Accuracy (^)

Dataset BR LP CC RAkEL BRkNN BPMLL MLkNN MLFLD MAXP

Cbmi09-bow 0.0169 0.0302 0.0447 0.0098 0.1032 0.0000 0.1013 0.1026 0.0939

Mediamill 0.0339 0.0500 0.0661 0.0126 0.1125 0.0077 0.1074 0.1111 0.1050

Average 0.0254 0.0401 0.0554 0.0112 0.1079 0.0039 0.1044 0.1069 0.0995

Rank 7 6 5 8 1 9 3 2 4

(h) Ex-F1 (^)

Dataset BR LP CC RAkEL BRkNN BPMLL MLkNN MLFLD MAXP

Cbmi09-bow 0.4193 0.3729 0.4079 0.2857 0.4933 0.4542 0.5083 NaN 0.4947

Mediamill 0.4706 0.4231 0.4648 0.3139 0.5263 0.4766 0.5317 NaN 0.5298

Average 0.4450 0.3980 0.4364 0.2998 0.5098 0.4654 0.5200 NaN 0.5123

Rank 5 7 6 8 3 4 1 NaN 2

(i) Macro-F1 (^)

Dataset BR LP CC RAkEL BRkNN BPMLL MLkNN MLFLD MAXP

Cbmi09-bow 0.0742 0.0696 0.0705 0.0242 0.0618 0.0600 0.0939 0.1146 0.1155

Mediamill 0.1349 0.1102 0.1192 0.0361 0.1056 0.0933 0.1063 0.1128 0.1148

Average 0.1046 0.0899 0.0949 0.0302 0.0837 0.0767 0.1001 0.1137 0.1152

Rank 3 6 5 9 7 8 4 2 1

(j) Micro-F1 (^)

Dataset BR LP CC RAkEL BRkNN BPMLL MLkNN MLFLD MAXP

Cbmi09-bow 0.4343 0.3848 0.4247 0.2960 0.5033 0.4715 0.5184 0.5084 0.5118

Mediamill 0.4882 0.4352 0.4824 0.3259 0.5415 0.4935 0.5442 0.5433 0.5450

Average 0.4613 0.4100 0.4536 0.3110 0.5224 0.4825 0.5313 0.5259 0.5284

Rank 6 8 7 9 4 5 1 3 2

Observations: From Table 6.110(a), MLFLD and MLFLD-MAXP could not

compute Ex-F1, avg precision, rank loss, and accuracy showed by NaN. When functioning

for remaining metrics (not having NaN) is considered as shown in Table 6.110(b), then

MLFLD outshined with the smallest average rank 2.2 among 9. MLFLD-MAXP also

worked similarly.

Table 6.111 shows that no particular algorithm could improve all metrics. Pro-

posed algorithms have enhanced coverage and macro-F1, while for 8 parameters, they

functioned similarly to that of enhanced algorithms.

From Table 5.3 and 5.4, though there are 101 labels in both datasets, the cardi-

nality of the dataset is only 4. Average and maximum no. of labels/example is only 4 and

17, respectively. The average no. of Ex/label is 4. It means that out of 43907, approx. 4

examples are associated with one label. It is reflected in Table 6.111(i) by the enhanced
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performance of MLFLD-MAXP and MLFLD by 15% and 13% resp. for macro-F1 that is

more influenced by rare labels.

Compared to MLkNN, both algorithms worked better for one error and coverage,

while MLFLD is better for subset accuracy.

Table 6.110: Summary of MLFLD and MLFLD-MAXP Performance for large datasets

(a) Summary of 10 metrics

Metric BR LP CC RAkEL BRkNN BPMLL MLkNN MLFLD MAXP

HamLoss 0.0442 0.0519 0.0446 0.0422 0.0325 0.0642 0.0324 0.0327 0.0328

RankLoss 0.2541 0.3767 0.2400 0.3476 0.0910 0.0575 0.0569 NaN NaN

OneError 0.5546 0.7324 0.3615 0.4268 0.1915 0.2290 0.1924 0.1921 0.1921

Coverage 64.231 65.659 57.620 67.393 30.146 19.740 19.498 19.488 19.488

AvgPrec 0.4498 0.2420 0.4853 0.2779 0.6699 0.6574 0.6872 NaN NaN

Accuracy 0.3229 0.2915 0.3289 0.1972 0.4038 0.3257 0.4105 NaN 0.4023

SubAcc 0.0254 0.0401 0.0554 0.0112 0.1079 0.0039 0.1044 0.1069 0.0995

Ex-F1 0.4450 0.3980 0.4364 0.2998 0.5098 0.4654 0.5200 NaN 0.5123

Macro F1 0.1046 0.0899 0.0949 0.0302 0.0837 0.0767 0.1001 0.1137 0.1152

Micro F1 0.4613 0.4100 0.4536 0.3110 0.5224 0.4825 0.5313 0.5259 0.5284

Avg Rank 5.8 7.3 5.4 7.5 3 5.4 2 2.2 2.4

#Wins 0 0 0 0 2 0 6 1 2

(b) Summary of 6 metrics without NaN

Metric BR LP CC RAkEL BRkNN BPMLL MLkNN MLFLD MAXP

HamLoss 0.0442 0.0519 0.0446 0.0422 0.0325 0.0642 0.0324 0.0327 0.0328

OneError 0.5546 0.7324 0.3615 0.4268 0.1915 0.2290 0.1924 0.1921 0.1921

Coverage 64.231 65.659 57.620 67.393 30.146 19.740 19.498 19.488 19.488

SubAcc 0.0254 0.0401 0.0554 0.0112 0.1079 0.0039 0.1044 0.1069 0.0995

Macro F1 0.1046 0.0899 0.0949 0.0302 0.0837 0.0767 0.1001 0.1137 0.1152

Micro F1 0.4613 0.4100 0.4536 0.3110 0.5224 0.4825 0.5313 0.5259 0.5284

Avg Rank 6.2 7.5 6.0 7.8 3.3 6.7 2.7 2.2 2.3

#Wins 0 0 0 0 2 0 2 1 2

172



Table 6.111: Performance of proposed algorithms for large datasets

6.5.4 Effect of distance variation for feature similarities on the perfor-

mance of proposed algorithms using Hamming distance for label

dissimilarities for large datasets

By keeping Hamming distance measure the same for label dissimilarity, both algo-

rithms are analyzed and compared with competing algorithm by varying feature similarity
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measures shown in Table 6.112 and 6.113.

Table 6.112: Effect of distance variation on MLFLD and MAXP for large datasets

(a) Hamming loss (_)

Dataset MLkNN
MLFLD MLFLD-MAXP

Euclidean Manhattan Minkowski Euclidean Manhattan Minkowski

Cbmi09-bow 0.0331 0.0336 0.0331 0.0334 0.0337 0.0332 0.0335

Mediamill 0.0316 0.0317 0.0317 0.0317 0.0318 0.0317 0.0318

Average 0.0324 0.0327 0.0324 0.0326 0.0328 0.0325 0.0327

Rank 1 5 2 4 7 3 5

(b) Ranking loss (_)

Dataset MLkNN
MLFLD MLFLD-MAXP

Euclidean Manhattan Minkowski Euclidean Manhattan Minkowski

Cbmi09-bow 0.0604 NaN NaN NaN NaN NaN NaN

Mediamill 0.0533 NaN NaN NaN NaN NaN NaN

Average 0.0569 NaN NaN NaN NaN NaN NaN

Rank 1 - - - - - -

(c) One Error (_)

Dataset MLkNN
MLFLD MLFLD-MAXP

Euclidean Manhattan Minkowski Euclidean Manhattan Minkowski

Cbmi09-bow 0.2043 0.2032 0.2039 0.2084 0.2032 0.2039 0.2084

Mediamill 0.1804 0.1809 0.1805 0.1831 0.1809 0.1805 0.1831

Average 0.1924 0.1921 0.1922 0.1958 0.1921 0.1922 0.1958

Rank 5 1 3 6 1 3 6

(d) Coverage (_)

Dataset MLkNN
MLFLD MLFLD-MAXP

Euclidean Manhattan Minkowski Euclidean Manhattan Minkowski

Cbmi09-bow 20.1887 20.1426 20.0584 19.7938 20.1426 20.0584 19.7938

Mediamill 18.8066 18.8340 18.8114 18.8683 18.8340 18.8114 18.8683

Average 19.4977 19.4883 19.4349 19.3311 19.4883 19.4349 19.3311

Rank 7 5 3 1 5 3 1

(e) Average Precision (^)

Dataset MLkNN
MLFLD MLFLD-MAXP

Euclidean Manhattan Minkowski Euclidean Manhattan Minkowski

Cbmi09-bow 0.6738 NaN NaN NaN NaN NaN NaN

Mediamill 0.7005 NaN NaN NaN NaN NaN NaN

Average 0.6872 NaN NaN NaN NaN NaN NaN

Dataset MLkNN
MLFLD MLFLD-MAXP

Euclidean Manhattan Minkowski Euclidean Manhattan Minkowski

Cbmi09-bow 0.5184 0.5084 0.5174 0.5190 0.5118 0.5198 0.5204

Mediamill 0.5442 0.5433 0.5460 0.5416 0.5450 0.5471 0.5431

Average 0.5313 0.5259 0.5317 0.5303 0.5284 0.5335 0.5318

Rank 4 7 3 5 6 1 2

174



Table 6.113: Effect of distance variation on MLFLD and MAXP for large datasets

(f) Accuracy (^)

Dataset MLkNN
MLFLD MLFLD-MAXP

Euclidean Manhattan Minkowski Euclidean Manhattan Minkowski

Cbmi09-bow 0.4009 NaN NaN NaN 0.3869 0.3969 0.3939

Mediamill 0.4200 NaN NaN NaN 0.4176 0.4194 0.4147

Average 0.4105 NaN NaN NaN 0.4023 0.4082 0.4043

Rank 1 - - - 4 2 3

(g) Subset Accuracy (^)

Dataset MLkNN
MLFLD MLFLD-MAXP

Euclidean Manhattan Minkowski Euclidean Manhattan Minkowski

Cbmi09-bow 0.1013 0.1026 0.1073 0.1015 0.0939 0.0991 0.0933

Mediamill 0.1074 0.1111 0.1090 0.1070 0.1050 0.1042 0.1014

Average 0.1044 0.1069 0.1082 0.1043 0.0995 0.1017 0.0974

Rank 3 2 1 4 6 5 7

(h) Ex-F1 (^)

Dataset MLkNN
MLFLD MLFLD-MAXP

Euclidean Manhattan Minkowski Euclidean Manhattan Minkowski

Cbmi09-bow 0.5083 NaN NaN NaN 0.4947 0.5045 0.5026

Mediamill 0.5317 NaN NaN NaN 0.5298 0.5322 0.5275

Average 0.5200 NaN NaN NaN 0.5123 0.5184 0.5151

Rank 1 - - - 4 2 3

(i) Macro-F1 (^)

Dataset MLkNN
MLFLD MLFLD-MAXP

Euclidean Manhattan Minkowski Euclidean Manhattan Minkowski

Cbmi09-bow 0.0939 0.1146 0.1094 0.1231 0.1155 0.1098 0.1236

Mediamill 0.1063 0.1128 0.1150 0.1119 0.1148 0.1165 0.1132

Average 0.1001 0.1137 0.1122 0.1175 0.1152 0.1132 0.1184

Rank 7 4 6 2 3 5 1

(j) Micro-F1 (^)

Dataset MLkNN
MLFLD MLFLD-MAXP

Euclidean Manhattan Minkowski Euclidean Manhattan Minkowski

Cbmi09-bow 0.5184 0.5084 0.5174 0.5190 0.5118 0.5198 0.5204

Mediamill 0.5442 0.5433 0.5460 0.5416 0.5450 0.5471 0.5431

Average 0.5313 0.5259 0.5317 0.5303 0.5284 0.5335 0.5318

Rank 4 7 3 5 6 1 2
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Table 6.114: Summary of distance variation with proposed algorithms for large datasets

(a) Summary of 10 metrics

MLFLD MLFLD-MAXP
Dataset MLkNN

Euclidean Manhattan Minkowski Euclidean Manhattan Minkowski

HamLoss 0.0324 0.0327 0.0324 0.0326 0.0328 0.0325 0.0327

RankLoss 0.0569 NaN NaN NaN NaN NaN NaN

OneError 0.1924 0.1921 0.1922 0.1958 0.1921 0.1922 0.1958

Coverage 19.4977 19.4883 19.4349 19.3311 19.4883 19.4349 19.3311

AvgPrec 0.6872 NaN NaN NaN NaN NaN NaN

Accuracy 0.4105 NaN NaN NaN 0.4023 0.4082 0.4043

SubAcc 0.1044 0.1069 0.1082 0.1043 0.0995 0.1017 0.0974

Ex-F1 0.5200 NaN NaN NaN 0.5123 0.5184 0.5151

Macro-F1 0.1001 0.1137 0.1122 0.1175 0.1152 0.1132 0.1184

Micro-F1 0.5313 0.5259 0.5317 0.5303 0.5284 0.5335 0.5318

ExecTime 638 1305 1242 1522 1291 1255 1502

Avg Rank 3.1 4 2.8 3.7 4.5 3 4

#Wins 5 1 2 1 1 1 2

(b) Summary of 6 metrics without NaN

MLFLD MLFLD-MAXP
Dataset MLkNN

Euclidean Manhattan Minkowski Euclidean Manhattan Minkowski

HamLoss 0.0324 0.0327 0.0324 0.0326 0.0328 0.0325 0.0327

OneError 0.1924 0.1921 0.1922 0.1958 0.1921 0.1922 0.1958

Coverage 19.4977 19.4883 19.4349 19.3311 19.4883 19.4349 19.3311

SubAcc 0.1044 0.1069 0.1082 0.1043 0.0995 0.1017 0.0974

Macro-F1 0.1001 0.1137 0.1122 0.1175 0.1152 0.1132 0.1184

Micro-F1 0.5313 0.5259 0.5317 0.5303 0.5284 0.5335 0.5318

ExecTime 638 1305 1242 1522 1291 1255 1502

Avg Rank 4.5 4 2.8 3.7 4.7 3.3 4

#Wins 1 1 2 1 1 1 2

Observations: Table 6.114(a) shows that MLFLD using Manhattan distance for

feature similarity has outperformed among all the six combinations and MLkNN. Even if

only six measures (not showing NaN) are considered, then also the winner is the same for

large datasets as shown in Table 6.114b). MLFLD could not compute 4 metrics shown by

NaN, because of zero label instances.

All six variations of proposed algorithms have improved coverage and macro-F

measures. Using Minkowski, better performance is obtained for coverage, subset accuracy,

and macro-F1 than that with the remaining two distances. The use of Minkowski with
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MLFLD-MAXP results in more improvement of macro-F1 than Euclidean. The time re-

quired by Manhattan, Euclidean and Minkowski experiments are twice, more than twice,

and approx. 2.5 times as compared to that of MLkNN, respectively.

6.6 Effect of distance variation for label dissimilarity on the

performance of proposed algorithms

In all previous sections, Hamming distance is used for label dissimilarity. In this

section, the effect of using two other measures, namely Jaccard and SimIC distance, is

observed.

6.6.1 Performance of proposed algorithms using Jaccard distance for la-

bel dissimilarity

Jaccard distance uses union and intersection operations for computation. It is

used to compute label dissimilarity in this section.

6.6.1.1 Performance of MLFLD and MLFLD-MAXP (train test splits) using

Jaccard distance for label dissimilarity to check the effect of distance

variation for feature similarity

First, the performance of proposed algorithms using Jaccard distance is compared

with that of a contesting algorithm. Proposed algorithms are evaluated using three distance

measures for feature similarity in this section shown in Table 6.115 to 6.124.
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Table 6.115: Effect of distance variation on Hamming Loss (↓) with Jaccard distance
using TrTe

Dataset MLkNN
MLFLD MLFLD-MAXP

Euclidean Manhattan Minkowski Euclidean Manhattan Minkowski

Emotions 0.2162 0.2277 0.2186 0.2228 0.2285 0.2203 0.2236

Scene 0.0962 0.0851 0.0858 0.0892 0.0885 0.0917 0.0916

Image 0.1147 0.1127 0.1150 0.1140 0.1147 0.1177 0.1103

Yeast 0.2008 0.2068 0.2001 0.2078 0.2067 0.2001 0.2074

Arts Humanity 0.0612 0.0658 0.0658 0.0660 0.0817 0.0821 0.0826

Business Eco. 0.0269 0.0295 0.0298 0.0331 0.0296 0.0298 0.0326

Education 0.0387 0.0459 0.0455 0.0490 0.0595 0.0581 0.0620

Entertainment 0.0604 0.0689 0.0662 0.0755 0.0860 0.0850 0.0884

Health 0.0458 0.0549 0.0518 0.0561 0.0548 0.0518 0.0559

Reference 0.0314 0.0355 0.0355 0.0346 0.0370 0.0370 0.0389

Science 0.0325 0.0374 0.0368 0.0372 0.0512 0.0510 0.0509

Social Science 0.0218 0.0299 0.0303 0.0310 0.0329 0.0346 0.0349

Society Culture 0.0537 0.0592 0.0592 0.0626 0.0652 0.0624 0.0690

Average 0.0769 0.0815 0.0800 0.0830 0.0874 0.0863 0.0883

Rank 1 3 2 4 6 5 7

Table 6.116: Effect of distance variation on Ranking Loss (↓) with Jaccard distance using
TrTe

Dataset MLkNN
MLFLD MLFLD-MAXP

Euclidean Manhattan Minkowski Euclidean Manhattan Minkowski

Emotions 0.1781 0.1664 0.1683 0.1862 0.1664 0.1683 0.1862

Scene 0.0930 0.0826 0.0840 0.0824 0.0826 0.0840 0.0824

Image 0.1154 0.0926 0.0892 0.0826 0.0926 0.0892 0.0826

Yeast 0.1766 0.1822 0.1775 0.1791 0.1822 0.1775 0.1791

Arts Humanity 0.1514 0.1772 0.1759 0.1851 0.1772 0.1759 0.1851

Business Eco. 0.0373 0.0502 0.0481 0.0570 0.0502 0.0481 0.0570

Education 0.0800 0.1271 0.1190 0.1301 0.1271 0.1190 0.1301

Entertainment 0.1151 0.1696 0.1662 0.1666 0.1696 0.1662 0.1666

Health 0.0605 0.0835 0.0798 0.0894 0.0835 0.0798 0.0894

Reference 0.0919 0.1122 0.1120 0.1124 0.1122 0.1120 0.1124

Science 0.1167 0.1855 0.1812 0.1800 0.1855 0.1812 0.1800

Social Science 0.0561 0.0903 0.0849 0.0914 0.0903 0.0849 0.0914

Society Culture 0.1338 0.1654 0.1585 0.1705 0.1654 0.1585 0.1705

Average 0.1081 0.1296 0.1265 0.1318 0.1296 0.1265 0.1318

Rank 1 4 2 6 4 2 6
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Table 6.117: Effect of distance variation on One Error (↓) with Jaccard distance using
TrTe

Dataset MLkNN
MLFLD MLFLD-MAXP

Euclidean Manhattan Minkowski Euclidean Manhattan Minkowski

Emotions 0.3218 0.3218 0.3267 0.3069 0.3218 0.3267 0.3069

Scene 0.2425 0.2258 0.2316 0.2241 0.2258 0.2316 0.2241

Image 0.2517 0.2250 0.2150 0.2017 0.2250 0.2150 0.2017

Yeast 0.2519 0.2628 0.2650 0.2541 0.2628 0.2650 0.2541

Arts Humanity 0.6330 0.7387 0.7443 0.7443 0.7387 0.7443 0.7443

Business Eco. 0.1213 0.1470 0.1533 0.1777 0.1470 0.1533 0.1777

Education 0.5207 0.7490 0.7323 0.7743 0.7490 0.7323 0.7743

Entertainment 0.5300 0.6963 0.6967 0.7053 0.6963 0.6967 0.7053

Health 0.4190 0.4977 0.5080 0.5460 0.4977 0.5080 0.5460

Reference 0.4730 0.5220 0.5220 0.5507 0.5220 0.5220 0.5507

Science 0.5810 0.8010 0.8017 0.8017 0.8010 0.8017 0.8017

Social Science 0.3270 0.4947 0.5270 0.5343 0.4947 0.5270 0.5343

Society Culture 0.4357 0.5377 0.4993 0.5840 0.5377 0.4993 0.5840

Average 0.3930 0.4784 0.4787 0.4927 0.4784 0.4787 0.4927

Rank 1 2 4 6 2 4 6

Table 6.118: Effect of distance variation on Coverage (↓) with Jaccard distance using
TrTe

Dataset MLkNN
MLFLD MLFLD-MAXP

Euclidean Manhattan Minkowski Euclidean Manhattan Minkowski

Emotions 1.9356 1.8416 1.8366 2.0050 1.8416 1.8366 2.0050

Scene 0.5661 0.5151 0.5234 0.5159 0.5151 0.5234 0.5159

Image 0.6083 0.5150 0.5033 0.4750 0.5150 0.5033 0.4750

Yeast 6.4318 6.5278 6.4482 6.4896 6.5278 6.4482 6.4896

Arts Humanity 5.4313 6.1297 6.0850 6.3130 6.1297 6.0850 6.3130

Business Eco. 2.1840 2.6870 2.5730 3.0040 2.6870 2.5730 3.0040

Education 3.4973 5.0587 4.8073 5.1657 5.0587 4.8073 5.1657

Entertainment 3.1467 4.3277 4.2607 4.2573 4.3277 4.2607 4.2573

Health 3.3043 4.1757 4.0703 4.3583 4.1757 4.0703 4.3583

Reference 3.5420 4.2063 4.2017 4.2207 4.2063 4.2017 4.2207

Science 6.0470 8.8140 8.6713 8.6090 8.8140 8.6713 8.6090

Social Science 3.0340 4.5370 4.2897 4.5687 4.5370 4.2897 4.5687

Society Culture 5.3653 6.2267 6.0667 6.3003 6.2267 6.0667 6.3003

Average 3.4687 4.2740 4.1798 4.3294 4.2740 4.1798 4.3294

Rank 1 4 2 6 4 2 6

179



Table 6.119: Effect of distance variation on Average Precision (↑) with Jaccard distance
using TrTe

Dataset MLkNN
MLFLD MLFLD-MAXP

Euclidean Manhattan Minkowski Euclidean Manhattan Minkowski

Emotions 0.7810 0.7911 0.7892 0.7774 0.7911 0.7892 0.7774

Scene 0.8511 0.8638 0.8599 0.8638 0.8638 0.8599 0.8638

Image 0.8456 0.8676 0.8728 0.8813 0.8676 0.8728 0.8813

Yeast 0.7505 0.7445 0.7486 0.7484 0.7445 0.7486 0.7484

Arts Humanity 0.5097 0.4348 0.4370 0.4189 0.4348 0.4370 0.4189

Business Eco. 0.8798 0.8405 0.8460 0.8171 0.8405 0.8460 0.8171

Education 0.5993 0.4183 0.4336 0.3969 0.4183 0.4336 0.3969

Entertainment 0.6013 0.4643 0.4662 0.4596 0.4643 0.4662 0.4596

Health 0.6817 0.5913 0.6013 0.5641 0.5913 0.6013 0.5641

Reference 0.6194 0.5574 0.5581 0.5439 0.5574 0.5581 0.5439

Science 0.5324 0.3432 0.3471 0.3386 0.3432 0.3471 0.3386

Social Science 0.7481 0.6131 0.6023 0.5902 0.6131 0.6023 0.5902

Society Culture 0.6128 0.5370 0.5567 0.5062 0.5370 0.5567 0.5062

Average 0.6933 0.6205 0.6245 0.6082 0.6205 0.6245 0.6082

Rank 1 4 2 6 4 2 6

Table 6.120: Effect of distance variation on Accuracy (↑) with Jaccard distance using
TrTe

Dataset MLkNN
MLFLD MLFLD-MAXP

Euclidean Manhattan Minkowski Euclidean Manhattan Minkowski

Emotions 0.4818 0.4827 0.5202 0.4917 0.5000 0.5301 0.5066

Scene 0.6597 0.6958 0.6950 0.6848 0.7397 0.7301 0.7312

Image 0.6492 0.7008 0.7042 0.7103 0.7325 0.7258 0.7444

Yeast 0.4998 0.4810 0.5017 0.4918 0.4832 0.5017 0.4943

Arts Humanity 0.0331 0.0634 0.0459 0.0545 0.1993 0.1942 0.1915

Business Eco. 0.6967 0.6704 0.6736 0.6198 0.6705 0.6736 0.6465

Education 0.1560 0.0555 0.0641 0.0884 0.1901 0.2055 0.1656

Entertainment 0.1862 0.1091 0.1079 0.1401 0.2528 0.2478 0.2360

Health 0.3390 0.3845 0.3539 0.1669 0.3876 0.3755 0.3193

Reference 0.1032 0.0389 0.0346 0.1970 0.4285 0.4290 0.4040

Science 0.0695 0.0462 0.0420 0.0331 0.1655 0.1626 0.1516

Social Science 0.2996 0.2186 0.2191 0.1614 0.4542 0.4265 0.4155

Society Culture 0.2431 0.1804 0.1703 0.1234 0.3466 0.3739 0.3089

Average 0.3398 0.3175 0.3179 0.3049 0.4270 0.4289 0.4089

Rank 4 6 5 7 2 1 3
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Table 6.121: Effect of distance variation on Subset Accuracy (↑) with Jaccard distance
using TrTe

Dataset MLkNN
MLFLD MLFLD-MAXP

Euclidean Manhattan Minkowski Euclidean Manhattan Minkowski

Emotions 0.2178 0.2426 0.2921 0.2426 0.2475 0.2970 0.2426

Scene 0.6012 0.6463 0.6430 0.6321 0.6873 0.6756 0.6756

Image 0.5983 0.6350 0.6333 0.6333 0.6650 0.6533 0.6650

Yeast 0.1647 0.1788 0.1788 0.1941 0.1788 0.1788 0.1941

Arts Humanity 0.0277 0.0510 0.0377 0.0420 0.1543 0.1523 0.1447

Business Eco. 0.5353 0.5060 0.5127 0.4680 0.5060 0.5127 0.4883

Education 0.1310 0.0350 0.0500 0.0557 0.1360 0.1540 0.1083

Entertainment 0.1687 0.0830 0.0963 0.1097 0.2033 0.2043 0.1787

Health 0.2403 0.2700 0.2503 0.0887 0.2717 0.2670 0.2060

Reference 0.0963 0.0353 0.0313 0.1783 0.3827 0.3833 0.3617

Science 0.0603 0.0367 0.0350 0.0277 0.1353 0.1337 0.1173

Social Science 0.2700 0.2000 0.1993 0.1490 0.4097 0.3837 0.3733

Society Culture 0.2010 0.1457 0.1387 0.1017 0.2663 0.2867 0.2317

Average 4 6 5 7 2 1 3

Rank 4 6 5 7 2 1 3

Table 6.122: Effect of distance variation on Ex-F1 (↑) with Jaccard distance using TrTe

Dataset MLkNN
MLFLD MLFLD-MAXP

Euclidean Manhattan Minkowski Euclidean Manhattan Minkowski

Emotions 0.5662 0.5569 0.5917 0.5691 0.5792 0.6033 0.5897

Scene 0.6793 0.7124 0.7124 0.7025 0.7572 0.7483 0.7499

Image 0.6667 0.7233 0.7283 0.7369 0.7555 0.7505 0.7719

Yeast 0.6067 0.5816 0.6060 0.5912 0.5848 0.6060 0.5952

Arts Humanity 0.0352 0.0683 0.0491 0.0592 0.2173 0.2111 0.2097

Business Eco. 0.7546 0.7298 0.7324 0.6754 0.7300 0.7325 0.7046

Education 0.1647 0.0627 0.0692 0.1004 0.2101 0.2246 0.1868

Entertainment 0.1924 0.1185 0.1122 0.1511 0.2709 0.2640 0.2571

Health 0.3772 0.4291 0.3937 0.1978 0.4327 0.4172 0.3640

Reference 0.1055 0.0401 0.0357 0.2035 0.4443 0.4448 0.4188

Science 0.0728 0.0498 0.0446 0.0350 0.1769 0.1736 0.1650

Social Science 0.3100 0.2253 0.2263 0.1658 0.4703 0.4420 0.4308

Society Culture 0.2594 0.1941 0.1827 0.1321 0.3782 0.4083 0.3394

Average 0.3685 0.3455 0.3449 0.3323 0.4621 0.4636 0.4448

Rank 4 5 6 7 2 1 3
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Table 6.123: Effect of distance variation on Macro-F1 (↑) with Jaccard distance using
TrTe

Dataset MLkNN
MLFLD MLFLD-MAXP

Euclidean Manhattan Minkowski Euclidean Manhattan Minkowski

Emotions 0.5880 0.6099 0.6424 0.6306 0.6152 0.6425 0.6377

Scene 0.7156 0.7518 0.7509 0.7426 0.7590 0.7505 0.7540

Image 0.5904 0.6104 0.6268 0.6280 0.6209 0.6321 0.6347

Yeast 0.3444 0.3878 0.3789 0.3968 0.3884 0.3789 0.3973

Arts Humanity 0.0343 0.0293 0.0226 0.0405 0.0674 0.0623 0.0802

Business Eco. 0.1817 NaN NaN NaN NaN NaN NaN

Education 0.1421 NaN NaN NaN NaN NaN NaN

Entertainment 0.1271 0.1131 0.1016 0.1130 0.1421 0.1372 0.1387

Health 0.1567 NaN NaN NaN NaN NaN NaN

Reference 0.0907 NaN NaN NaN NaN NaN NaN

Science 0.0408 0.0179 0.0159 0.0148 0.0470 0.0414 0.0459

Social Science 0.1175 NaN NaN NaN NaN NaN NaN

Society Culture 0.0714 0.0408 0.0375 0.0443 0.0730 0.0595 0.0722

Average 0.2462 0.3201 0.3221 0.3263 0.3391 0.3381 0.3451

Rank 7 6 5 4 2 3 1

Table 6.124: Effect of distance variation on Micro-F1 (↑) with Jaccard distance using
TrTe

Dataset MLkNN
MLFLD MLFLD-MAXP

Euclidean Manhattan Minkowski Euclidean Manhattan Minkowski

Emotions 0.6278 0.6209 0.6414 0.6322 0.6272 0.6426 0.6382

Scene 0.7156 0.7474 0.7461 0.7373 0.7515 0.7428 0.7445

Image 0.7166 0.7412 0.7392 0.7463 0.7456 0.7403 0.7603

Yeast 0.6303 0.6154 0.6340 0.6207 0.6163 0.6340 0.6223

Arts Humanity 0.0480 0.0871 0.0621 0.0847 0.2005 0.1937 0.1986

Business Eco. 0.6990 0.6766 0.6736 0.6333 0.6761 0.6737 0.6461

Education 0.2541 0.1158 0.1214 0.1561 0.2205 0.2338 0.2013

Entertainment 0.2696 0.1984 0.1815 0.2097 0.2815 0.2732 0.2689

Health 0.4033 0.4088 0.3827 0.2501 0.4108 0.3954 0.3593

Reference 0.1652 0.0679 0.0609 0.2763 0.4393 0.4397 0.4129

Science 0.1063 0.0727 0.0647 0.0542 0.1666 0.1645 0.1656

Social Science 0.3865 0.2940 0.2920 0.2279 0.4423 0.4147 0.4080

Society Culture 0.2896 0.2244 0.2131 0.1570 0.3453 0.3735 0.3120

Average 0.4086 0.3747 0.3702 0.3681 0.4557 0.4555 0.4414

Rank 4 5 6 7 1 2 3
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Table 6.125: Summary of effect of distance variation on MLFLD and MLFLD-MAXP
performance with Jaccard distance using TrTe

MLFLD MLFLD-MAXP
Dataset MLkNN

Euclidean Manhattan Minkowski Euclidean Manhattan Minkowski

HamLoss 0.0769 0.0815 0.0800 0.0830 0.0874 0.0863 0.0883

RankLoss 0.1081 0.1296 0.1265 0.1318 0.1296 0.1265 0.1318

OneError 0.3930 0.4784 0.4787 0.4927 0.4784 0.4787 0.4927

Coverage 3.4687 4.2740 4.1798 4.3294 4.2740 4.1798 4.3294

AvgPrec 0.6933 0.6205 0.6245 0.6082 0.6205 0.6245 0.6082

Accuracy 0.3398 0.3175 0.3179 0.3049 0.4270 0.4289 0.4089

SubAcc 0.2548 0.2358 0.2383 0.2248 0.3265 0.3294 0.3067

Ex-F1 0.3685 0.3455 0.3449 0.3323 0.4621 0.4636 0.4448

Macro-F1 0.2462 0.3201 0.3221 0.3263 0.3391 0.3381 0.3451

Micro-F1 0.4086 0.3747 0.3702 0.3681 0.4557 0.4555 0.4414

ExecTime 6 32 35 112 32 31 115

Avg Rank 2.8 4.5 3.9 6 2.9 2.3 4.4

#Wins 5 0 0 0 1 3 1

Observations: Table 6.125 for train-test splits of datasets shows that MLFLD-

MAXP with Manhattan distance for feature similarity has outperformed among six exper-

imentations carried out using proposed algorithms with Jaccard distance for label dissimi-

larity and competing algorithm MLkNN. It has shown a minimum average rank among all.

MLFLD-MAXP has enhanced for the last five metrics, but it could not be better in the

first five metrics. Calibration of a threshold for individual datasets may help to improve

the performance of these measures.

MLFLD-MAXP with Manhattan has raised performance by 29% for subset ac-

curacy, 25% for accuracy and ex-F1, 11% for micro-F, and 7% for macro-F compared to

MLkNN. Both algorithms could not compute macro-F for 5 datasets.

All MLFLD variations are noticed to function better than all MLFLD-MAXP

variations to reduce misclassifications, but could not beat MLkNN.

For one error, coverage, rank loss, and avg precision, both proposed algorithms

have similar performance when the same distance is used for feature similarity.
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6.6.1.2 Effect of distance variation for feature similarity on MLFLD and MLFLD-

MAXP Performance (cross-validation) using Jaccard distance for label

dissimilarity

In this section, keeping label dissimilarity distance the same, feature similarity

measures are varied to observe the performance of MLFLD and MLFLD-MAXP and com-

pared with MLkNN shown in Table 6.126 to 6.135.

Table 6.126: Effect of distance variation on Hamming Loss (↓) with Jaccard distance
using cross-validation

Dataset MLkNN
MLFLD MLFLD-MAXP

Euclidean Manhattan Minkowski Euclidean Manhattan Minkowski

Emotions 0.1959 0.1989 0.1898 0.1912 0.1952 0.1904 0.1918

Image 0.1690 0.1632 0.1612 0.1629 0.1661 0.1661 0.1663

Scene 0.0861 0.0795 0.0786 0.0796 0.0811 0.0801 0.0810

Yeast 0.1940 0.1967 0.1939 0.1975 0.1961 0.1938 0.1976

CAL500 0.1388 0.1393 0.1395 0.1387 0.1393 0.1395 0.1387

Average 0.1568 0.1555 0.1526 0.1540 0.1556 0.1540 0.1551

Rank 7 5 1 2 6 2 4

Table 6.127: Effect of distance variation on Ranking Loss (↓) with Jaccard distance using
cross-validation

Dataset MLkNN
MLFLD MLFLD-MAXP

Euclidean Manhattan Minkowski Euclidean Manhattan Minkowski

Emotions 0.1594 0.1547 0.1488 0.1551 0.1547 0.1488 0.1551

Image 0.1680 0.1569 0.1567 0.1586 0.1569 0.1567 0.1586

Scene 0.0775 0.0689 0.0679 0.0664 0.0689 0.0679 0.0664

Yeast 0.1670 0.1688 0.1662 0.1732 0.1688 0.1662 0.1732

CAL500 0.1828 0.1836 0.1835 0.1834 0.1836 0.1835 0.1834

Average 0.1509 0.1466 0.1446 0.1473 0.1466 0.1446 0.1473

Rank 7 3 1 5 3 1 5
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Table 6.128: Effect of distance variation on One Error (↓) with Jaccard distance using
cross-validation

Dataset MLkNN
MLFLD MLFLD-MAXP

Euclidean Manhattan Minkowski Euclidean Manhattan Minkowski

Emotions 0.2699 0.2508 0.2576 0.2441 0.2508 0.2576 0.2441

Image 0.3000 0.2916 0.2866 0.2876 0.2916 0.2866 0.2876

Scene 0.2256 0.2050 0.2017 0.2017 0.2050 0.2017 0.2017

Yeast 0.2300 0.2311 0.2320 0.2440 0.2311 0.2320 0.2440

CAL500 0.1176 0.1140 0.1160 0.1260 0.1140 0.1160 0.1260

Average 0.2286 0.2185 0.2188 0.2207 0.2185 0.2188 0.2207

Rank 7 1 3 5 1 3 5

Table 6.129: Effect of distance variation on Coverage (↓) with Jaccard distance using
cross-validation

Dataset MLkNN
MLFLD MLFLD-MAXP

Euclidean Manhattan Minkowski Euclidean Manhattan Minkowski

Emotions 1.7764 1.7542 1.7136 1.7559 1.7542 1.7136 1.7559

Image 0.9390 0.8964 0.8979 0.9030 0.8964 0.8979 0.9030

Scene 0.4753 0.4288 0.4242 0.4146 0.4288 0.4242 0.4146

Yeast 6.2750 6.3183 6.2631 6.3432 6.3183 6.2631 6.3432

CAL500 130.564 130.5120 130.370 130.5020 130.5120 130.370 130.502

Average 28.006 27.9819 27.9338 27.9837 27.9819 27.9338 27.9837

Rank 7 3 1 5 3 1 5

Table 6.130: Effect of distance variation on Average Precision (↑) with Jaccard distance
using cross-validation

Dataset MLkNN
MLFLD MLFLD-MAXP

Euclidean Manhattan Minkowski Euclidean Manhattan Minkowski

Emotions 0.8034 0.8094 0.8136 0.8129 0.8094 0.8136 0.8129

Image 0.8030 0.8106 0.8120 0.8115 0.8106 0.8120 0.8115

Scene 0.8652 0.8785 0.8804 0.8819 0.8785 0.8804 0.8819

Yeast 0.7650 0.7663 0.7682 0.7611 0.7663 0.7682 0.7611

CAL500 0.4942 0.4927 0.4918 0.4914 0.4927 0.4918 0.4914

Average 0.7462 0.7515 0.7532 0.7518 0.7515 0.7532 0.7518

Rank 7 5 1 3 5 1 3
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Table 6.131: Effect of distance variation on Accuracy (↑) with Jaccard distance using
cross-validation

Dataset MLkNN
MLFLD MLFLD-MAXP

Euclidean Manhattan Minkowski Euclidean Manhattan Minkowski

Emotions 0.5340 0.5158 0.5494 0.5516 0.5463 0.5694 0.5648

Image 0.4937 0.5709 0.5735 0.5837 0.6187 0.6157 0.6174

Scene 0.6635 0.7194 0.7122 0.7276 0.7604 0.7631 0.7628

Yeast 0.5162 0.5172 0.5166 0.5129 0.5195 0.5178 0.5141

CAL500 0.1972 0.1951 0.1960 0.1967 0.1951 0.1960 0.1967

Average 0.4809 0.5037 0.5095 0.5145 0.5280 0.5324 0.5312

Rank 7 6 5 4 3 1 2

Table 6.132: Effect of distance variation on Subset Accuracy (↑) with Jaccard distance
using cross-validation

Dataset MLkNN
MLFLD MLFLD-MAXP

Euclidean Manhattan Minkowski Euclidean Manhattan Minkowski

Emotions 0.2934 0.2915 0.3119 0.2949 0.3017 0.3237 0.3000

Image 0.4090 0.4657 0.4703 0.4642 0.5063 0.5038 0.4943

Scene 0.6248 0.6758 0.6721 0.6742 0.7150 0.7196 0.7079

Yeast 0.1874 0.2033 0.2012 0.1975 0.2037 0.2017 0.1975

CAL500 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Average 0.3029 0.3273 0.3311 0.3262 0.3453 0.3498 0.3399

Rank 7 5 4 6 2 1 3

Table 6.133: Effect of distance variation on Ex-F1 (↑) with Jaccard distance using cross-
validation

Dataset MLkNN
MLFLD MLFLD-MAXP

Euclidean Manhattan Minkowski Euclidean Manhattan Minkowski

Emotions 0.6141 0.5901 0.6263 0.6344 0.6279 0.6491 0.6505

Image 0.5223 0.6070 0.6089 0.6243 0.6572 0.6540 0.6593

Scene 0.6764 0.7340 0.7257 0.7456 0.7756 0.7776 0.7813

Yeast 0.6204 0.6165 0.6171 0.6121 0.6201 0.6187 0.6139

CAL500 0.3240 0.3212 0.3225 0.3237 0.3212 0.3225 0.3237

Average 0.5514 0.5738 0.5801 0.5880 0.6004 0.6044 0.6057

Rank 7 6 5 4 3 2 1
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Table 6.134: Effect of distance variation on Macro-F1 (↑) with Jaccard distance using
cross-validation

Dataset MLkNN
MLFLD MLFLD-MAXP

Euclidean Manhattan Minkowski Euclidean Manhattan Minkowski

Emotions 0.6226 0.6399 0.6613 0.6680 0.6534 0.6642 0.6710

Image 0.5815 0.6358 0.6396 0.6483 0.6507 0.6498 0.6554

Scene 0.7364 0.7718 0.7711 0.7759 0.7789 0.7815 0.7837

Yeast 0.3853 NaN NaN NaN NaN NaN NaN

CAL500 0.1714 NaN NaN NaN NaN NaN NaN

Average 0.4994 0.6825 0.6907 0.6974 0.6943 0.6985 0.7034

Rank 7 6 5 3 4 2 1

Table 6.135: Effect of distance variation on Micro-F1 (↑) with Jaccard distance using
cross-validation

Dataset MLkNN
MLFLD MLFLD-MAXP

Euclidean Manhattan Minkowski Euclidean Manhattan Minkowski

Emotions 0.6610 0.6476 0.6732 0.6787 0.6633 0.6784 0.6821

Image 0.5842 0.6346 0.6368 0.6453 0.6483 0.6463 0.6521

Scene 0.7332 0.7641 0.7634 0.7687 0.7702 0.7723 0.7736

Yeast 0.6471 0.6477 0.6479 0.6428 0.6492 0.6484 0.6432

CAL500 0.3209 0.3182 0.3197 0.3200 0.3182 0.3197 0.3200

Average 0.5893 0.6024 0.6082 0.6111 0.6098 0.6130 0.6142

Rank 7 6 5 3 4 2 1

Table 6.136: Summary of effect of distance variation on MLFLD and MLFLD-MAXP
performance with Jaccard distance using cross-validation

MLFLD MLFLD-MAXP
Dataset MLkNN

Euclidean Manhattan Minkowski Euclidean Manhattan Minkowski

HamLoss 0.1568 0.1555 0.1526 0.1540 0.1556 0.1540 0.1551

RankLoss 0.1509 0.1466 0.1446 0.1473 0.1466 0.1446 0.1473

OneError 0.2286 0.2185 0.2188 0.2207 0.2185 0.2188 0.2207

Coverage 28.006 27.9819 27.9338 27.9837 27.9819 27.9338 27.9837

AvgPrec 0.7462 0.7515 0.7532 0.7518 0.7515 0.7532 0.7518

Accuracy 0.4809 0.5037 0.5095 0.5145 0.5280 0.5324 0.5312

SubAcc 0.3029 0.3273 0.3311 0.3262 0.3453 0.3498 0.3399

Ex-F1 0.5514 0.5738 0.5801 0.5880 0.6004 0.6044 0.6057

Macro-F1 0.4994 0.6825 0.6907 0.6974 0.6943 0.6985 0.7034

Micro-F1 0.5893 0.6024 0.6082 0.6111 0.6098 0.6130 0.6142

ExecTime 17 62 64 72 52 58 81

Avg Rank 7 4.6 3.1 4 3.4 1.6 3

#Wins 0 1 4 0 1 5 3
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Observations: From Table 6.136, the use of Manhattan distance for feature

similarity has elevated the performance of MLFLD-MAXP when Jaccard distance is used

for label dissimilarity. Also, for accuracy, subset accuracy, example-based F measure (Ex-

F1), macro-F1, and micro-F1, MLFLD-MAXP performance is improved than MLFLD,

whereas Manhattan with MLFLD-MAXP has outperformed among all. It is noticed that

MLFLD-MAXP with Minkowski and Jaccard distance works better on all harmonic mean

measures. Performance of both proposed algorithms is the same for one error, coverage,

rank loss, and avg precision with 1-5% improvement, except ham loss for which MLFLD

seems better with approx. 1% improvement. A rise in both accuracies, ex-F1 and macro-F1

are between 8-15% while it is 3-4% for micro-F1.

6.6.2 Performance of proposed algorithms using SimIC distance for label

dissimilarity

The Similarity of Information Content (SimIC) is the proposed distance measure

that is inspired by SimGIC distance. It is described in chapter 4. It is used to measure

label dissimilarity, and its performance is compared with that of Jaccard and Hamming

distance.

6.6.2.1 Performance of MLFLD and MLFLD-MAXP (train-test splits) using

SimIC distance for label dissimilarity to check the effect of distance

variation for feature similarity

This section has analyzed the performance of using SimIC distance with MLFLD

and MLFLD-MAXP on train-test (TrTe) splits by varying feature similarity distance mea-

sures shown in Table 6.137 to 6.146.
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Table 6.137: Effect of distance variation on Hamming Loss (↓) with SimIC distance using
TrTe

Dataset MLkNN
MLFLD MLFLD-MAXP

Euclidean Manhattan Minkowski Euclidean Manhattan Minkowski

Emotions 0.2162 0.2376 0.2285 0.2277 0.2417 0.2277 0.2244

Scene 0.0962 0.0851 0.0858 0.0892 0.0888 0.0911 0.0913

Image 0.1147 0.1147 0.1150 0.1140 0.1157 0.1177 0.1103

Yeast 0.2008 0.2134 0.2091 0.2119 0.2135 0.2084 0.2118

Arts Humanity 0.0612 0.0661 0.0661 0.0675 0.0816 0.0822 0.0845

Business Eco. 0.0269 0.0317 0.0312 0.0332 0.0307 0.0305 0.0346

Education 0.0387 0.0483 0.0481 0.0509 0.0608 0.0598 0.0619

Entertainment 0.0604 0.0778 0.0730 0.0775 0.0869 0.0854 0.0912

Health 0.0458 0.0548 0.0524 0.0574 0.0547 0.0522 0.0572

Reference 0.0314 0.0354 0.0353 0.0356 0.0584 0.0594 0.0506

Science 0.0325 0.0374 0.0372 0.0386 0.0517 0.0519 0.0525

Social Science 0.0218 0.0329 0.0303 0.0309 0.0366 0.0347 0.0370

Society Culture 0.0537 0.0630 0.0596 0.0655 0.0712 0.0689 0.0766

Average 0.0769 0.0845 0.0824 0.0846 0.0917 0.0900 0.0911

Rank 1 3 2 4 7 5 6

Table 6.138: Effect of distance variation on Ranking Loss (↓) with SimIC distance using
TrTe

Dataset MLkNN
MLFLD MLFLD-MAXP

Euclidean Manhattan Minkowski Euclidean Manhattan Minkowski

Emotions 0.1781 0.1737 0.1722 0.1815 0.1737 0.1722 0.1815

Scene 0.0930 0.0849 0.0855 0.0815 0.0849 0.0855 0.0815

Image 0.1154 0.0882 0.0889 0.0831 0.0882 0.0889 0.0831

Yeast 0.1766 0.1892 0.1818 0.1893 0.1892 0.1818 0.1893

Arts Humanity 0.1514 0.1904 0.1837 0.2056 0.1904 0.1837 0.2056

Business Eco. 0.0373 0.0516 0.0498 0.0608 0.0516 0.0498 0.0608

Education 0.0800 0.1451 0.1289 0.1364 0.1451 0.1289 0.1364

Entertainment 0.1151 0.2345 0.2297 0.1953 0.2345 0.2297 0.1953

Health 0.0605 0.0851 0.0821 0.1007 0.0851 0.0821 0.1007

Reference 0.0919 0.3026 0.2918 0.2123 0.3026 0.2918 0.2123

Science 0.1167 0.2406 0.2093 0.2418 0.2406 0.2093 0.2418

Social Science 0.0561 0.1106 0.0937 0.1126 0.1106 0.0937 0.1126

Society Culture 0.1338 0.1978 0.1760 0.2112 0.1978 0.1760 0.2112

Average 0.1081 0.1611 0.1518 0.1548 0.1611 0.1518 0.1548

Rank 1 6 2 4 6 2 4
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Table 6.139: Effect of distance variation on One Error (↓) with SimIC distance using
TrTe

Dataset MLkNN
MLFLD MLFLD-MAXP

Euclidean Manhattan Minkowski Euclidean Manhattan Minkowski

Emotions 0.3218 0.3317 0.3267 0.3020 0.3317 0.3267 0.3020

Scene 0.2425 0.2283 0.2316 0.2232 0.2283 0.2316 0.2232

Image 0.2517 0.2167 0.2167 0.1950 0.2167 0.2167 0.1950

Yeast 0.2519 0.2781 0.2683 0.2694 0.2781 0.2683 0.2694

Arts Humanity 0.6330 0.7370 0.7453 0.7647 0.7370 0.7453 0.7647

Business Eco. 0.1213 0.1550 0.1617 0.2043 0.1550 0.1617 0.2043

Education 0.5207 0.7553 0.7417 0.7573 0.7553 0.7417 0.7573

Entertainment 0.5300 0.6893 0.6980 0.7223 0.6893 0.6980 0.7223

Health 0.4190 0.4983 0.5087 0.5473 0.4983 0.5087 0.5473

Reference 0.4730 0.8740 0.8917 0.7417 0.8740 0.8917 0.7417

Science 0.5810 0.8120 0.8147 0.8293 0.8120 0.8147 0.8293

Social Science 0.3270 0.5527 0.5270 0.5720 0.5527 0.5270 0.5720

Society Culture 0.4357 0.6090 0.5857 0.6737 0.6090 0.5857 0.6737

Average 0.3930 0.5183 0.5168 0.5232 0.5183 0.5168 0.5232

Rank 1 4 2 6 4 2 6

Table 6.140: Effect of distance variation on Coverage (↓) with SimIC distance using TrTe

Dataset MLkNN
MLFLD MLFLD-MAXP

Euclidean Manhattan Minkowski Euclidean Manhattan Minkowski

Emotions 1.9356 1.8762 1.8762 1.9752 1.8762 1.8762 1.9752

Scene 0.5661 0.5268 0.5309 0.5100 0.5268 0.5309 0.5100

Image 0.6083 0.4967 0.5017 0.4783 0.4967 0.5017 0.4783

Yeast 6.4318 6.5758 6.5278 6.6467 6.5758 6.5278 6.6467

Arts Humanity 5.4313 6.5490 6.3027 6.9090 6.5490 6.3027 6.9090

Business Eco. 2.1840 2.7227 2.6203 3.0327 2.7227 2.6203 3.0327

Education 3.4973 5.8527 5.2007 5.4610 5.8527 5.2007 5.4610

Entertainment 3.1467 5.5913 5.4767 4.8280 5.5913 5.4767 4.8280

Health 3.3043 4.2040 4.1017 4.7567 4.2040 4.1017 4.7567

Reference 3.5420 10.4083 10.0433 7.4393 10.4083 10.0433 7.4393

Science 6.0470 11.1503 9.7957 11.0490 11.1503 9.7957 11.0490

Social Science 3.0340 5.3880 4.7050 5.5003 5.3880 4.7050 5.5003

Society Culture 5.3653 7.0357 6.5067 7.3437 7.0357 6.5067 7.3437

Average 3.4687 5.2598 4.9376 5.0715 5.2598 4.9376 5.0715

Rank 1 6 2 4 6 2 4
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Table 6.141: Effect of distance variation on Average Precision (↑) with SimIC distance
using TrTe

Dataset MLkNN
MLFLD MLFLD-MAXP

Euclidean Manhattan Minkowski Euclidean Manhattan Minkowski

Emotions 0.7810 0.7853 0.7828 0.7824 0.7853 0.7828 0.7824

Scene 0.8511 0.8615 0.8592 0.8647 0.8615 0.8592 0.8647

Image 0.8456 0.8730 0.8722 0.8836 0.8730 0.8722 0.8836

Yeast 0.7505 0.7338 0.7451 0.7369 0.7338 0.7451 0.7369

Arts Humanity 0.5097 0.4108 0.4196 0.3960 0.4108 0.4196 0.3960

Business Eco. 0.8798 0.8350 0.8420 0.7946 0.8350 0.8420 0.7946

Education 0.5993 0.4015 0.4177 0.4025 0.4015 0.4177 0.4025

Entertainment 0.6013 0.4294 0.4256 0.4365 0.4294 0.4256 0.4365

Health 0.6817 0.5852 0.5884 0.5419 0.5852 0.5884 0.5419

Reference 0.6194 0.2334 0.2274 0.3629 0.2334 0.2274 0.3629

Science 0.5324 0.3083 0.3208 0.2844 0.3083 0.3208 0.2844

Social Science 0.7481 0.5563 0.5896 0.5501 0.5563 0.5896 0.5501

Society Culture 0.6128 0.4677 0.5001 0.4282 0.4677 0.5001 0.4282

Average 0.6933 0.5755 0.5839 0.5742 0.5755 0.5839 0.5742

Rank 1 4 2 6 4 2 6

Table 6.142: Effect of distance variation on Accuracy (↑) with SimIC distance using
TrTe

Dataset MLkNN
MLFLD MLFLD-MAXP

Euclidean Manhattan Minkowski Euclidean Manhattan Minkowski

Emotions 0.4818 0.4909 0.4967 0.4707 0.4934 0.5165 0.5087

Scene 0.6597 0.6958 0.6950 0.6848 0.7389 0.7317 0.7320

Image 0.6492 0.6928 0.7042 0.7103 0.7303 0.7258 0.7444

Yeast 0.4998 0.4778 0.4709 0.4747 0.4789 0.4738 0.4782

Arts Humanity 0.0331 0.0610 0.0481 0.0493 0.2008 0.1936 0.1708

Business Eco. 0.6967 0.6335 0.6397 0.6196 0.6627 0.6657 0.6232

Education 0.1560 0.0742 0.0748 0.1043 0.1880 0.1998 0.1834

Entertainment 0.1862 0.1626 0.1446 0.1652 0.2556 0.2476 0.2346

Health 0.3390 0.3850 0.3608 0.1985 0.3884 0.3725 0.3191

Reference 0.1032 0.0374 0.0326 0.1174 0.1108 0.0951 0.2312

Science 0.0695 0.0462 0.0414 0.0400 0.1523 0.1463 0.1353

Social Science 0.2996 0.2215 0.2193 0.2451 0.3990 0.4258 0.3813

Society Culture 0.2431 0.1918 0.1707 0.1296 0.2892 0.3082 0.2385

Average 0.3398 0.3208 0.3153 0.3084 0.3914 0.3925 0.3831

Rank 4 5 6 7 2 1 3
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Table 6.143: Effect of distance variation on Subset Accuracy (↑) with SimIC distance
using TrTe

Dataset MLkNN
MLFLD MLFLD-MAXP

Euclidean Manhattan Minkowski Euclidean Manhattan Minkowski

Emotions 0.2178 0.2376 0.2624 0.2376 0.2376 0.2673 0.2624

Scene 0.6012 0.6463 0.6430 0.6321 0.6865 0.6773 0.6764

Image 0.5983 0.6317 0.6333 0.6333 0.6667 0.6533 0.6650

Yeast 0.1647 0.1788 0.1723 0.1799 0.1788 0.1723 0.1799

Arts Humanity 0.0277 0.0490 0.0397 0.0353 0.1553 0.1517 0.1240

Business Eco. 0.5353 0.4763 0.4927 0.4673 0.4973 0.5113 0.4690

Education 0.1310 0.0467 0.0467 0.0667 0.1300 0.1423 0.1243

Entertainment 0.1687 0.1267 0.1267 0.1277 0.2013 0.2027 0.1823

Health 0.2403 0.2693 0.2527 0.0997 0.2713 0.2603 0.1933

Reference 0.0963 0.0330 0.0287 0.1053 0.0967 0.0827 0.2077

Science 0.0603 0.0367 0.0333 0.0323 0.1197 0.1140 0.1063

Social Science 0.2700 0.1920 0.1993 0.2240 0.3533 0.3830 0.3413

Society Culture 0.2010 0.1497 0.1370 0.1007 0.2153 0.2347 0.1727

Average 0.2548 0.2364 0.2360 0.2263 0.2931 0.2964 0.2850

Rank 4 5 6 7 2 1 3

Table 6.144: Effect of distance variation on Ex-F1 (↑) with SimIC distance using TrTe

Dataset MLkNN
MLFLD MLFLD-MAXP

Euclidean Manhattan Minkowski Euclidean Manhattan Minkowski

Emotions 0.5662 0.5729 0.5701 0.5464 0.5762 0.5949 0.5893

Scene 0.6793 0.7124 0.7124 0.7025 0.7564 0.7500 0.7507

Image 0.6667 0.7136 0.7283 0.7369 0.7519 0.7505 0.7719

Yeast 0.6067 0.5771 0.5702 0.5731 0.5790 0.5749 0.5782

Arts Humanity 0.0352 0.0657 0.0514 0.0549 0.2190 0.2104 0.1894

Business Eco. 0.7546 0.6900 0.6928 0.6754 0.7223 0.7216 0.6798

Education 0.1647 0.0838 0.0847 0.1178 0.2091 0.2208 0.2047

Entertainment 0.1924 0.1757 0.1512 0.1795 0.2756 0.2642 0.2545

Health 0.3772 0.4297 0.4023 0.2375 0.4337 0.4154 0.3687

Reference 0.1055 0.0389 0.0339 0.1216 0.1158 0.0994 0.2396

Science 0.0728 0.0498 0.0444 0.0428 0.1646 0.1585 0.1462

Social Science 0.3100 0.2321 0.2265 0.2527 0.4154 0.4413 0.3957

Society Culture 0.2594 0.2084 0.1839 0.1410 0.3184 0.3373 0.2642

Average 0.3685 0.3500 0.3425 0.3371 0.4260 0.4261 0.4179

Rank 4 5 6 7 2 1 3
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Table 6.145: Effect of distance variation on Macro-F1 (↑) with SimIC distance using
TrTe

Dataset MLkNN
MLFLD MLFLD-MAXP

Euclidean Manhattan Minkowski Euclidean Manhattan Minkowski

Emotions 0.5880 0.6187 0.6116 0.6015 0.6171 0.6194 0.6245

Scene 0.7156 0.7518 0.7509 0.7426 0.7578 0.7525 0.7548

Image 0.5904 0.5970 0.6268 0.6280 0.6132 0.6321 0.6345

Yeast 0.3444 0.3991 0.3844 0.3864 0.3996 0.3854 0.3875

Arts Humanity 0.0343 0.0273 0.0232 0.0375 0.0708 0.0630 0.0768

Business Eco. 0.1817 NaN NaN NaN NaN NaN NaN

Education 0.1421 NaN NaN NaN NaN NaN NaN

Entertainment 0.1271 0.1312 0.1092 0.1236 0.1456 0.1377 0.1409

Health 0.1567 NaN NaN NaN NaN NaN NaN

Reference 0.0907 NaN NaN NaN NaN NaN NaN

Science 0.0408 0.0179 0.0160 0.0185 0.0481 0.0428 0.0521

Social Science 0.1175 NaN NaN NaN NaN NaN NaN

Society Culture 0.0714 0.0550 0.0395 0.0566 0.0812 0.0748 0.0813

Average 0.2462 0.3248 0.3202 0.3243 0.3417 0.3385 0.3441

Rank 7 4 6 5 2 3 1

Table 6.146: Effect of distance variation on Micro-F1 (↑) with SimIC distance using TrTe

Dataset MLkNN
MLFLD MLFLD-MAXP

Euclidean Manhattan Minkowski Euclidean Manhattan Minkowski

Emotions 0.6278 0.6250 0.6302 0.6177 0.6219 0.6378 0.6324

Scene 0.7156 0.7474 0.7461 0.7373 0.7507 0.7443 0.7452

Image 0.7166 0.7329 0.7392 0.7463 0.7409 0.7403 0.7603

Yeast 0.6303 0.6104 0.6072 0.6083 0.6108 0.6093 0.6095

Arts Humanity 0.0480 0.0839 0.0650 0.0774 0.2019 0.1931 0.1814

Business Eco. 0.6990 0.6506 0.6493 0.6327 0.6675 0.6634 0.6247

Education 0.2541 0.1495 0.1443 0.1741 0.2266 0.2315 0.2164

Entertainment 0.2696 0.2341 0.2067 0.2374 0.2870 0.2732 0.2638

Health 0.4033 0.4092 0.3861 0.2877 0.4116 0.3946 0.3663

Reference 0.1652 0.0670 0.0592 0.1827 0.1165 0.1003 0.2367

Science 0.1063 0.0727 0.0649 0.0639 0.1584 0.1536 0.1431

Social Science 0.3865 0.2884 0.2923 0.3123 0.3903 0.4141 0.3749

Society Culture 0.2896 0.2323 0.2144 0.1659 0.2946 0.3095 0.2457

Average 0.4086 0.3772 0.3696 0.3726 0.4214 0.4204 0.4154

Rank 4 5 7 6 1 2 3
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Table 6.147: Summary of effect of distance variation on MLFLD and MLFLD-MAXP
performance with SimIC distance using TrTe

MLFLD MLFLD-MAXP
Dataset MLkNN

Euclidean Manhattan Minkowski Euclidean Manhattan Minkowski

HamLoss 0.0769 0.0845 0.0824 0.0846 0.0917 0.0900 0.0911

RankLoss 0.1081 0.1611 0.1518 0.1548 0.1611 0.1518 0.1548

OneError 0.3930 0.5183 0.5168 0.5232 0.5183 0.5168 0.5232

Coverage 3.4687 5.2598 4.9376 5.0715 5.2598 4.9376 5.0715

AvgPrec 0.6933 0.5755 0.5839 0.5742 0.5755 0.5839 0.5742

Accuracy 0.3398 0.3208 0.3153 0.3084 0.3914 0.3925 0.3831

SubAcc 0.2548 0.2364 0.2360 0.2263 0.2931 0.2964 0.2850

Ex-F1 0.3685 0.3500 0.3425 0.3371 0.4260 0.4261 0.4179

Macro-F1 0.2462 0.3248 0.3202 0.3243 0.3417 0.3385 0.3441

Micro-F1 0.4086 0.3772 0.3696 0.3726 0.4214 0.4204 0.4154

ExecTime 6 32 29 111 33 36 146

Avg Rank 2.8 4.7 4.1 5.6 3.6 2.1 3.9

#Wins 5 0 0 0 1 3 1

Observations: Table 6.147 show that MLFLD-MAXP with Manhattan distance

for feature similarity has topped for avg rank among seven experimentations when SimIC

distance is used for label dissimilarity. To summarize,

� All MLFLD-MAXP variations defeated remaining experiments with Manhattan sur-

passing the remaining two distances. They raised accuracy, subset accuracy, and

ex-F1 by 12-16%, and macro and micro-F1 approx. 8% and 2% w.r.t. MLkNN resp.

� Like other experiments, here also MLFLD proved itself better, showing fewer misclas-

sifications, but could not exceed MLkNN for the same.

� For coverage, one error, avg precision, and rank loss, proposed algorithms revealed

the equal performance and Manhattan experiments stood at rank 2 among 6 distance

variants.

6.6.2.2 Performance of MLFLD and MLFLD-MAXP (cross-validation) using

SimIC distance for label dissimilarity to check the effect of distance

variation for feature similarity

This section has compared the functioning of proposed algorithms for ten folds by

varying measures for feature similarity while keeping SimIC distance for label dissimilarity
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shown in Table 6.148 to 6.157.

Table 6.148: Effect of distance variation on Hamming Loss (↓) with SimIC distance using
cross-validation

Dataset MLkNN
MLFLD MLFLD-MAXP

Euclidean Manhattan Minkowski Euclidean Manhattan Minkowski

Emotions 0.1959 0.1952 0.1929 0.1986 0.1944 0.1935 0.1997

Image 0.1690 0.1620 0.1601 0.1628 0.1657 0.1630 0.1651

Scene 0.0861 0.0792 0.0789 0.0799 0.0807 0.0800 0.0806

Yeast 0.1940 0.2036 0.1983 0.2078 0.2041 0.1980 0.2080

CAL500 0.1388 0.1409 0.1401 0.1415 0.1409 0.1401 0.1415

Average 0.1568 0.1562 0.1541 0.1581 0.1572 0.1549 0.1590

Rank 4 3 1 6 5 2 7

Table 6.149: Effect of distance variation on Ranking Loss (↓) with SimIC distance using
cross-validation

Dataset MLkNN
MLFLD MLFLD-MAXP

Euclidean Manhattan Minkowski Euclidean Manhattan Minkowski

Emotions 0.1594 0.1574 0.1508 0.1580 0.1574 0.1508 0.1580

Image 0.1680 0.1576 0.1557 0.1576 0.1576 0.1557 0.1576

Scene 0.0775 0.0693 0.0680 0.0668 0.0693 0.0680 0.0668

Yeast 0.1670 0.1772 0.1688 0.1840 0.1772 0.1688 0.1840

CAL500 0.1828 0.1856 0.1839 0.1866 0.1856 0.1839 0.1866

Average 0.1509 0.1494 0.1454 0.1506 0.1494 0.1454 0.1506

Rank 7 3 1 5 3 1 5

Table 6.150: Effect of distance variation on One Error (↓) with SimIC distance using
cross-validation

Dataset MLkNN
MLFLD MLFLD-MAXP

Euclidean Manhattan Minkowski Euclidean Manhattan Minkowski

Emotions 0.2699 0.2610 0.2492 0.2678 0.2610 0.2492 0.2678

Image 0.3000 0.2901 0.2866 0.2886 0.2901 0.2866 0.2886

Scene 0.2256 0.2046 0.2017 0.1992 0.2046 0.2017 0.1992

Yeast 0.2300 0.2506 0.2386 0.2602 0.2506 0.2386 0.2602

CAL500 0.1176 0.1240 0.1220 0.1260 0.1240 0.1220 0.1260

Average 0.2286 0.2261 0.2196 0.2284 0.2261 0.2196 0.2284

Rank 7 3 1 5 3 1 5
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Table 6.151: Effect of distance variation on Coverage (↓) with SimIC distance using
cross-validation

Dataset MLkNN
MLFLD MLFLD-MAXP

Euclidean Manhattan Minkowski Euclidean Manhattan Minkowski

Emotions 1.7764 1.7576 1.7339 1.7576 1.7576 1.7339 1.7576

Image 0.9390 0.8999 0.8929 0.8969 0.8999 0.8929 0.8969

Scene 0.4753 0.4304 0.4246 0.4167 0.4304 0.4246 0.4167

Yeast 6.2750 6.3697 6.2763 6.4390 6.3697 6.2763 6.4390

CAL500 130.56 130.6520 130.2760 131.2640 130.6520 130.2760 131.2640

Average 28.006 28.0219 27.9207 28.1548 28.0219 27.9207 28.1548

Rank 3 4 1 6 4 1 6

Table 6.152: Effect of distance variation on Average Precision (↑) with SimIC distance
using cross-validation

Dataset MLkNN
MLFLD MLFLD-MAXP

Euclidean Manhattan Minkowski Euclidean Manhattan Minkowski

Emotions 0.8034 0.8061 0.8146 0.8038 0.8061 0.8146 0.8038

Image 0.8030 0.8104 0.8123 0.8116 0.8104 0.8123 0.8116

Scene 0.8652 0.8785 0.8805 0.8826 0.8785 0.8805 0.8826

Yeast 0.7650 0.7550 0.7651 0.7481 0.7550 0.7651 0.7481

CAL500 0.4942 0.4871 0.4903 0.4845 0.4871 0.4903 0.4845

Average 0.7462 0.7474 0.7526 0.7461 0.7474 0.7526 0.7461

Rank 5 3 1 6 3 1 6

Table 6.153: Effect of distance variation on Accuracy (↑) with SimIC distance using
cross-validation

Dataset MLkNN
MLFLD MLFLD-MAXP

Euclidean Manhattan Minkowski Euclidean Manhattan Minkowski

Emotions 0.5340 0.5401 0.5513 0.5182 0.5619 0.5671 0.5422

Image 0.4937 0.5702 0.5600 0.5713 0.6179 0.6215 0.6188

Scene 0.6635 0.7110 0.7116 0.7235 0.7615 0.7637 0.7641

Yeast 0.5162 0.4862 0.4996 0.4840 0.4899 0.5019 0.4875

CAL500 0.1972 0.2077 0.2028 0.2106 0.2077 0.2028 0.2106

Average 0.4809 0.5030 0.5051 0.5015 0.5278 0.5314 0.5246

Rank 7 5 4 6 2 1 3
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Table 6.154: Effect of distance variation on Subset Accuracy (↑) with SimIC distance
using cross-validation

Dataset MLkNN
MLFLD MLFLD-MAXP

Euclidean Manhattan Minkowski Euclidean Manhattan Minkowski

Emotions 0.2934 0.3068 0.3119 0.2729 0.3169 0.3220 0.2814

Image 0.4090 0.4702 0.4692 0.4622 0.5093 0.5188 0.5043

Scene 0.6248 0.6696 0.6717 0.6687 0.7171 0.7204 0.7079

Yeast 0.1874 0.1954 0.1983 0.1925 0.1959 0.1983 0.1925

CAL500 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Average 0.3029 0.3284 0.3302 0.3193 0.3478 0.3519 0.3372

Rank 7 5 4 6 2 1 3

Table 6.155: Effect of distance variation on Ex-F1 (↑) with SimIC distance using cross-
validation

Dataset MLkNN
MLFLD MLFLD-MAXP

Euclidean Manhattan Minkowski Euclidean Manhattan Minkowski

Emotions 0.6141 0.6155 0.6307 0.5975 0.6415 0.6485 0.6269

Image 0.5223 0.6044 0.5911 0.6085 0.6551 0.6568 0.6578

Scene 0.6764 0.7249 0.7250 0.7419 0.7763 0.7782 0.7830

Yeast 0.6204 0.5819 0.5973 0.5801 0.5875 0.6011 0.5855

CAL500 0.3240 0.3377 0.3315 0.3415 0.3377 0.3315 0.3415

Average 0.5514 0.5729 0.5751 0.5739 0.5996 0.6032 0.5989

Rank 7 6 4 5 2 1 3

Table 6.156: Effect of distance variation on Macro-F1 (↑) with SimIC distance using
cross-validation

Dataset MLkNN
MLFLD MLFLD-MAXP

Euclidean Manhattan Minkowski Euclidean Manhattan Minkowski

Emotions 0.6226 0.6596 0.6646 0.6459 0.6667 0.6674 0.6541

Image 0.5815 0.6358 0.6296 0.6399 0.6496 0.6508 0.6541

Scene 0.7364 0.7696 0.7701 0.7742 0.7793 0.7819 0.7845

Yeast 0.3853 NaN NaN NaN NaN NaN NaN

CAL500 0.1714 NaN NaN NaN NaN NaN NaN

Average 0.4994 0.6883 0.6881 0.6867 0.6985 0.7000 0.6976

Rank 7 4 5 6 2 1 3
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Table 6.157: Effect of distance variation on Micro-F1 (↑) with SimIC distance using
cross-validation

Dataset MLkNN
MLFLD MLFLD-MAXP

Euclidean Manhattan Minkowski Euclidean Manhattan Minkowski

Emotions 0.661 0.6665 0.6756 0.6520 0.6745 0.6792 0.6594

Image 0.5842 0.6328 0.6274 0.6372 0.6461 0.6478 0.6505

Scene 0.7332 0.7621 0.7626 0.7670 0.7709 0.7728 0.7746

Yeast 0.6471 0.6218 0.6323 0.6183 0.6227 0.6337 0.6194

CAL500 0.3209 0.3377 0.3303 0.3416 0.3377 0.3303 0.3416

Average 0.5893 0.6042 0.6056 0.6032 0.6104 0.6128 0.6091

Rank 7 5 4 6 2 1 3

Table 6.158: Summary of effect of distance variation on MLFLD and MLFLD-MAXP
performance with SimIC distance using cross-validation

MLFLD MLFLD-MAXP
Dataset MLkNN

Euclidean Manhattan Minkowski Euclidean Manhattan Minkowski

HamLoss 0.1568 0.1562 0.1541 0.1581 0.1572 0.1549 0.1590

RankLoss 0.1509 0.1494 0.1454 0.1506 0.1494 0.1454 0.1506

OneError 0.2286 0.2261 0.2196 0.2284 0.2261 0.2196 0.2284

Coverage 28.0060 28.0219 27.9207 28.1548 28.0219 27.9207 28.1548

AvgPrec 0.7462 0.7474 0.7526 0.7461 0.7474 0.7526 0.7461

Accuracy 0.4809 0.5030 0.5051 0.5015 0.5278 0.5314 0.5246

SubAcc 0.3029 0.3284 0.3302 0.3193 0.3478 0.3519 0.3372

Ex-F1 0.5514 0.5729 0.5751 0.5739 0.5996 0.6032 0.5989

Macro-F1 0.4994 0.6883 0.6881 0.6867 0.6985 0.7000 0.6976

Micro-F1 0.5893 0.6042 0.6056 0.6032 0.6104 0.6128 0.6091

ExecTime 17 65 65 61 55 56 64

Avg Rank 6.1 4.1 2.6 5.7 2.8 1.1 4.4

#Wins 0 0 5 0 0 9 0

Observations: From Table 6.158, when SimIC is used to measure label dissimilar-

ity, then MLFLD-MAXP and Manhattan pair has outshined among seven experimentations.

MLFLD-Manhattan pair functioned next to that of MLFLD-MAXP with Manhattan. To

summarize,

� Among MLFLD-MAXP variations, Manhattan, Euclidean, and Minkowski achieved

rank 1, 2, 3, respectively, for two accuracies and three F measures.

� All these variations elevated accuracy, ex-F1, and macro-F1 performance by approx.

8-10% compared to MLkNN. They raised subset accuracy and micro-F1 by approx.

11-16% and 3-4%, respectively.
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� Pattern noted for one error, coverage, avg precision, and rank loss is the same for

Hamming, Jaccard, and SimIC. The performance of MLFLD variants seems the same

as that of corresponding MLFLD-MAXP variations.

� All six experimentations have improved rank loss and one error than MLkNN, while

Minkowski variations are not able to improve avg precision and coverage.

6.6.3 Comparison of distances used for label dissimilarity

Throughout the experimentations, the main focus is to examine how the use of

label dissimilarity measure affects the performance of MLFLD and MLFLD-MAXP. Ini-

tially, only Hamming distance is used for label dissimilarity, and feature similarity measure

is taken as Euclidean, Manhattan, and Minkowski one by one. It resulted in three vari-

ants of MLFLD and MLFLD-MAXP each. These six variants are compared with MLkNN.

Later Jaccard and SimIC distance measures are also used for label dissimilarity resulting

in twelve new variants. In this section, all these variants are assessed together. Overall 2

X 3 X 3 = 18 variants are compared with each other and MLkNN.

6.6.3.1 Comparison of distance measures used for label dissimilarity with

cross-validation

The performance of using ten folds is examined in this section, by varying measures

of feature similarity and label dissimilarity. A summary is given in Table 6.159, and the

individual metric is visualized in Figure 6.1 to 6.11.
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Table 6.159: Comparison of distance measures used for label dissimilarity with cross-
validation

Label

Dissimilarity

Measure

Algorithm

Feature

Similarity

Measure

Avg Rank
Execution

Time

- MLkNN - 17.9 17

Hamming

MLFLD

Euclidean 10.1 60

Manhattan 9.6 57

Minkowski 12.2 70

MLFLD-MAXP

Euclidean 6 58

Manhattan 5.3 54

Minkowski 7.1 65

Jaccard

MLFLD

Euclidean 12.5 62

Manhattan 6.5 64

Minkowski 9.6 72

MLFLD-MAXP

Euclidean 8.5 52

Manhattan 2.9 58

Minkowski 7.3 81

SimIC

MLFLD

Euclidean 15.1 65

Manhattan 9.4 65

Minkowski 17.2 61

MLFLD-MAXP

Euclidean 11 55

Manhattan 4.9 56

Minkowski 13.2 64
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Figure 6.1: Comparison of distance measures used for label dissimilarity with cross-
validation for Hamming Loss(↓)

Figure 6.2: Comparison of distance measures used for label dissimilarity with cross-
validation for Ranking Loss(↓)
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Figure 6.3: Comparison of distance measures used for label dissimilarity with cross-
validation for One Error(↓)

Figure 6.4: Comparison of distance measures used for label dissimilarity with cross-
validation for Coverage(↓)
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Figure 6.5: Comparison of distance measures used for label dissimilarity with cross-
validation for Average Precision(↑)

Figure 6.6: Comparison of distance measures used for label dissimilarity with cross-
validation for Accuracy(↑)
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Figure 6.7: Comparison of distance measures used for label dissimilarity with cross-
validation for Subset Accuracy(↑)

Figure 6.8: Comparison of distance measures used for label dissimilarity with cross-
validation for Ex-F1(↑)
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Figure 6.9: Comparison of distance measures used for label dissimilarity with cross-
validation for Macro-F1(↑)

Figure 6.10: Comparison of distance measures used for label dissimilarity with cross-
validation for Micro-F1(↑)
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Figure 6.11: Comparison of distance measures used for label dissimilarity with cross-
validation

From Figure 6.11 for ten folds experiments, (MLFLD-MAXP, Jaccard, Manhat-

tan) triplet topped among 19 experiments with avg rank 2.9. To summarize,

� All variants of proposed algorithms defeated MLkNN in avg rank. It got a 17.9 avg

rank.

� For all metrics, the proposed algorithm variants exceeded MLkNN except avg preci-

sion, hamming loss, and coverage showing 17, 16, and 13 ranks among 19.

� For the first five parameters, the same behavior of MLFLD and MLFLD-MAXP is

seen for the same measures of feature similarity and label dissimilarity, as shown in

Figure 6.1 - 6.5).

� For MLFLD-MAXP, variations with Hamming and Jaccard seemed to behave simi-

larly, and both are viewed to be better than SimIC variants. This pattern is seen for

micro-F1 (Figure 6.10), ex-F1 (Figure 6.8) and avg precision (Figure 6.5) also.

� For macro-F1, all variations are increased in functionality than MLkNN (Figure 6.9).

� Among feature similarity distance measures, Manhattan always exceeded the remain-

ing two for both proposed algorithms and all label dissimilarity measures (Figure

6.11).
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6.6.3.2 Comparison of distance measures used for label dissimilarity with

train-test splits

The performance of using different combinations of feature and label dissimilarity

measures is examined while using them with proposed algorithms. A summary is given in

Table 6.160, and the individual metric is visualized in Figure 6.12 to 6.22 when train-test

splits are used for experiments.

Table 6.160: Comparison of distance measures used for label dissimilarity with train-test
splits

Label

Dissimilarity

Measure

Algorithm

Feature

Similarity

Measure

Avg Rank
Execution

Time

- MLkNN - 6.4 6

Hamming

MLFLD

Euclidean 7.7 28

Manhattan 9.9 31

Minkowski 11.5 107

MLFLD-MAXP

Euclidean 3.5 28

Manhattan 4.8 28

Minkowski 6 102

Jaccard

MLFLD

Euclidean 11.4 32

Manhattan 10.6 35

Minkowski 13.3 112

MLFLD-MAXP

Euclidean 7.1 32

Manhattan 6.5 31

Minkowski 9.3 115

SimIC

MLFLD

Euclidean 13.6 32

Manhattan 14.1 29

Minkowski 15.9 111

MLFLD-MAXP

Euclidean 12.1 33

Manhattan 10.7 36

Minkowski 12.4 146
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Figure 6.12: Comparison of distance measures used for label dissimilarity with train-test
splits for Hamming Loss (↓)

Figure 6.13: Comparison of distance measures used for label dissimilarity with train-test
splits for Ranking Loss (↓)
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Figure 6.14: Comparison of distance measures used for label dissimilarity with train-test
splits for One Error (↓)

Figure 6.15: Comparison of distance measures used for label dissimilarity with train-test
splits for Coverage (↓)
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Figure 6.16: Comparison of distance measures used for label dissimilarity with train-test
splits for Average Precision (↑)

Figure 6.17: Comparison of distance measures used for label dissimilarity with train-test
splits for Accuracy (↑)
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Figure 6.18: Comparison of distance measures used for label dissimilarity with train-test
splits for Subset Accuracy (↑)

Figure 6.19: Comparison of distance measures used for label dissimilarity with train-test
splits for Ex-F1 (↑)
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Figure 6.20: Comparison of distance measures used for label dissimilarity with train-test
splits for Macro-F1 (↑)

Figure 6.21: Comparison of distance measures used for label dissimilarity with train-test
splits for Micro-F1 (↑)
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Figure 6.22: Comparison of distance measures used for label dissimilarity with train-test
splits

From Table 6.160, in train-test experiments, (MLFLD-MAXP, Hamming, Eu-

clidean) triplet topped among 19 experiments with rank 3.5. MLFLD-MAXP and ham-

ming distance with Euclidean, Manhattan, Minkowski distances exceeded MLkNN in avg

rank. They got avg rank 3.5, 4.8, 6, and 6.4, respectively. The remaining variants could

not defeat MLkNN. It is followed by MLFLD-MAXP and Jaccard variants in avg rank as

7.1, 6.5, and 9.3. MLFLD-SimIC variations seemed not performing well. To summarize,

� MLFLD-MAXP and Hamming variants increased subset accuracy, accuracy, ex-F1,

and micro-F1, followed by MLFLD-MAXP and Jaccard variants. Its Hamming vari-

ations increased subset accuracy by 29-35%, accuracy and ex-F1 by 25-30%, and

micro-F1 by 10-15%, whereas Jaccard variants increased these parameters by 20-28%,

20-25% and 8-11% resp. MLFLD-MAXP and SimIC variants stood third, followed

by MLkNN. MLFLD could not exceed MLkNN for these parameters.

� The exact opposite pattern is revealed for hamming loss. MLFLD-Hamming experi-

ments are comparatively better for this parameter (Figure 6.12).

� For macro-F1, MLkNN is defeated by almost all variations of proposed algorithms

showing up to 10% rise (Figure 6.20).
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� MLkNN is seemed better for one error, ranking loss, coverage and average precision.

Hamming and Jaccard variations exhibited little better than SimIC variations for

these parameters(Figure 6.13-6.16).

6.7 Effect of feature selection on proposed algorithms

Attribute selection is proven to be beneficial to reduce the computational com-

plexity of classifiers. There are different ways of attribute selection for multi-label data,

as described in section 3.6 of chapter 3. The method used in this work is defined as an

algorithm MLFS in chapter 4. Experiments are carried out, and a comparison of proposed

algorithms with and without feature selection is made.

6.7.1 Effect of feature selection on MLFLD

In this section, the performance of MLFLD is examined when applied to datasets

preprocessed by MLFS shown in Table 6.161 and 6.162.
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Table 6.161: Effect of feature selection on for MLFLD

Hamming loss (_) Ranking loss (_)

Dataset MLFLD MLFS + MLFLD Dataset MLFLD MLFS + MLFLD

Emotions 0.1938 0.1969 Emotions 0.1483 0.1623

Image 0.1631 0.1608 Image 0.1570 0.1604

Scene 0.0797 0.0801 Scene 0.0682 0.0707

Yeast 0.1981 0.2039 Yeast 0.1689 0.1720

CAL500 0.1394 0.1395 CAL500 0.1835 0.1831

Average 0.1548 0.1562 Average 0.1452 0.1497

Rank 1 2 Rank 1 2

One Error (_) Coverage (_)

Dataset MLFLD MLFS + MLFLD Dataset MLFLD MLFS + MLFLD

Emotions 0.2492 0.2576 Emotions 1.7102 1.7644

Image 0.2916 0.2836 Image 0.8964 0.9134

Scene 0.2050 0.2112 Scene 0.4258 0.4392

Yeast 0.2378 0.2369 Yeast 6.2905 6.2793

CAL500 0.1160 0.1240 CAL500 130.5240 130.2020

Average 0.2199 0.2227 Average 27.9694 27.9197

Rank 1 2 Rank 2 1

Average Precision (^) Accuracy (^)

Dataset MLFLD MLFS + MLFLD Dataset MLFLD MLFS + MLFLD

Emotions 0.8183 0.8063 Emotions 0.5483 0.5507

Image 0.8105 0.8121 Image 0.5588 0.5668

Scene 0.8785 0.8745 Scene 0.7083 0.7113

Yeast 0.7648 0.7643 Yeast 0.5116 0.5036

CAL500 0.4918 0.4916 CAL500 0.2023 0.2029

Average 0.7528 0.7498 Average 0.5059 0.5071

Rank 1 2 Rank 2 1
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Table 6.162: Effect of feature selection on for MLFLD

Subset Accuracy (^) Ex-F1 (^)

Dataset MLFLD MLFS + MLFLD Dataset MLFLD MLFS + MLFLD

Emotions 0.3051 0.3102 Emotions 0.6274 0.6292

Image 0.4632 0.4723 Image 0.5916 0.5992

Scene 0.6629 0.6658 Scene 0.7235 0.7265

Yeast 0.2046 0.2100 Yeast 0.6109 0.6006

CAL500 0.0000 0.0000 CAL500 0.3311 0.3323

Average 0.3272 0.3317 Average 0.5769 0.5776

Rank 2 1 Rank 2 1

Macro-F1 (^) Micro-F1 (^)

Dataset MLFLD MLFS + MLFLD Dataset MLFLD MLFS + MLFLD

Emotions 0.6584 0.6581 Emotions 0.6727 0.6698

Image 0.6287 0.6320 Image 0.6259 0.6312

Scene 0.7683 0.7681 Scene 0.7617 0.7611

Yeast NaN NaN Yeast 0.6426 0.6325

CAL500 NaN NaN CAL500 0.3294 0.3306

Average 0.6851 0.6861 Average 0.6757 0.6737

Rank 2 1 Rank 1 2

Observations: From Table 6.163, MLFLD is noticed to perform almost similar

before and after feature selection resulting in the same average rank 1.5 and 5 wins each.

MLFLD with/without feature selection has outperformed MLkNN.

� For coverage, accuracy, subset accuracy, and ex-F1, feature selection proved to be

beneficial, while for remaining parameters, it is not.
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Table 6.163: Summary of effect of feature selection on MLFLD performance

Metric MLFLD MLFS + MLFLD

HamLoss 0.1548 0.1562

RankLoss 0.1452 0.1497

OneError 0.2199 0.2227

Coverage 27.9694 27.9197

AvgPrec 0.7528 0.7498

Accuracy 0.5059 0.5071

SubAcc 0.3272 0.3317

Ex-F1 0.5769 0.5776

Macro-F1 0.6851 0.6861

Micro-F1 0.6757 0.6737

ExecTime 60 37

Avg Rank 1.5 1.5

#Wins 5 5

� For avg precision, hamming loss, and micro-F1, performance is decreased slightly.

But for one error and rank loss, the difference in fall is 1.2% and 3.1% resp.

6.7.2 Effect of feature selection on MLFLD-MAXP

In this section, the performance of MLFLD-MAXP with cross-validation is mon-

itored and analyzed after feature selection shown in Table 6.164 and 6.165.
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Table 6.164: Effect of feature selection on MLFLD-MAXP

Hamming loss (_) Ranking loss (_)

Dataset MAXP MLFS + MAXP Dataset MAXP MLFS + MAXP

Emotions 0.1938 0.1986 Emotions 0.1483 0.1623

Image 0.1656 0.1613 Image 0.1570 0.1604

Scene 0.0812 0.0828 Scene 0.0682 0.0707

Yeast 0.1977 0.2036 Yeast 0.1689 0.1720

CAL500 0.1394 0.1395 CAL500 0.1835 0.1831

Average 0.1555 0.1572 Average 0.1452 0.1497

Rank 1 2 Rank 1 2

One Error (_) Coverage (_)

Dataset MAXP MLFS + MAXP Dataset MAXP MLFS + MAXP

Emotions 0.2492 0.2576 Emotions 1.7102 1.7644

Image 0.2916 0.2836 Image 0.8964 0.9134

Scene 0.2050 0.2112 Scene 0.4258 0.4392

Yeast 0.2378 0.2369 Yeast 6.2905 6.2793

CAL500 0.1160 0.1240 CAL500 130.5240 130.2020

Average 0.2199 0.2227 Average 27.9694 27.9197

Rank 1 2 Rank 2 1

Average Precision (^) Accuracy (^)

Dataset MAXP MLFS + MAXP Dataset MAXP MLFS + MAXP

Emotions 0.8183 0.8063 Emotions 0.5627 0.5617

Image 0.8105 0.8121 Image 0.6169 0.6260

Scene 0.8785 0.8745 Scene 0.7599 0.7548

Yeast 0.7648 0.7643 Yeast 0.5140 0.5061

CAL500 0.4918 0.4916 CAL500 0.2023 0.2029

Average 0.7528 0.7498 Average 0.5312 0.5303

Rank 1 2 Rank 1 2
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Table 6.165: Effect of feature selection on MLFLD-MAXP

Subset Accuracy (^) Ex-F1 (^)

Dataset MAXP MLFS + MAXP Dataset MAXP MLFS + MAXP

Emotions 0.3136 0.3136 Emotions 0.6441 0.6431

Image 0.5108 0.5198 Image 0.6532 0.6623

Scene 0.7117 0.7079 Scene 0.7761 0.7705

Yeast 0.2046 0.2100 Yeast 0.6145 0.6046

CAL500 0.0000 0.0000 CAL500 0.3311 0.3323

Average 0.3481 0.3503 Average 0.6038 0.6026

Rank 2 1 Rank 1 2

Macro-F1 (^) Micro-F1 (^)

Dataset MAXP MLFS + MAXP Dataset MAXP MLFS + MAXP

Emotions 0.6609 0.6593 Emotions 0.6766 0.6716

Image 0.6482 0.6566 Image 0.6449 0.6537

Scene 0.7795 0.7746 Scene 0.7706 0.7653

Yeast NaN NaN Yeast 0.6439 0.6338

CAL500 NaN NaN CAL500 0.3294 0.3306

Average 0.6962 0.6968 Average 0.6131 0.6110

Rank 2 1 Rank 1 2

Observations: Table 6.166 has shown that MLFLD-MAXP is better for 7 met-

rics while it has enhanced only 3 parameters slightly after applying feature selection on

datasets. Enhancement in subset accuracy, coverage and macro-F1 is 0.61%, 0.18% and

0.09% respectively. Most of the increase is noted for Image dataset. The reason may be

that no. of features reduced for Image is remarkable compared to other datasets shown in

Table 6.7.4(a).
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Table 6.166: Summary of effect of feature selection on MLFLD-MAXP performance

Metric MLFLD-MAXP MLFS + MLFLD-MAXP

HamLoss 0.1555 0.1572

RankLoss 0.1452 0.1497

OneError 0.2199 0.2227

Coverage 27.9694 27.9197

AvgPrec 0.7528 0.7498

Accuracy 0.5312 0.5303

SubAcc 0.3481 0.3503

Ex-F1 0.6038 0.6026

Macro-F1 0.6962 0.6968

Micro-F1 0.6131 0.6110

ExecTime 58 36

Avg Rank 1.3 1.7

#Wins 7 3

6.7.3 Comparison of MLFLD and MLFLD-MAXP performance to check

the effect of feature selection

How feature selection has affected working of both the proposed algorithms MLFLD

and MLFLD-MAXP is monitored in this section.

First datasets are processed with algorithm MLFS. Then obtained datasets with

reduced number of features and same number of labels are used further to evaluate
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Table 6.167: sumaary of MLFLD and MLFLD-MAXP performance to check effect of
feature selection

MLFS followed by
Metric MLFLD MAXP

MLFLD MAXP

HamLoss 0.1548 0.1555 0.1562 0.1572

RankLoss 0.1452 0.1452 0.1497 0.1497

OneError 0.2199 0.2199 0.2227 0.2227

Coverage 27.9694 27.9694 27.9197 27.9197

AvgPrec 0.7528 0.7528 0.7498 0.7498

Accuracy 0.5059 0.5312 0.5071 0.5303

SubAcc 0.3272 0.3481 0.3317 0.3503

Ex-F1 0.5769 0.6038 0.5776 0.6026

Macro-F1 0.6851 0.6962 0.6861 0.6968

Micro-F1 0.6757 0.6131 0.6737 0.6110

ExecTime 60 58 36 36

Avg Rank 2.4 1.7 2.7 2.5

#Wins 5 5 1 3

Observations: From Table 6.167, MLFLD-MAXP has functioned well among

four experiments. Feature selection has not enhanced the overall performance of the pro-

posed algorithms.

6.7.4 Feature selection: Comparison with competing algorithms

First datasets are preprocessed with MLFS algorithm for attribute selection and

then fed to all multi-label algorithms used for evaluation. When MLFS is run with threshold

1, those features selected for at least 1 label by selection criteria, are retained. Table 6.168(a)

shows a number of features for all datasets. It shows that attributes of Image are relevant to

more number of class labels among all datasets. When MLFS is executed with a threshold

of 25%, it retained features selected for at least 25% labels. Similarly, for 50 and 75 % is

also obtained, as shown in Table 6.169 and Figure 6.23.
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Table 6.168: Number of features selected for datasets

Dataset % Features Selected

Emotions 72

Image 84

Scene 68

Yeast 77

CAL500 75

Table 6.169: Percentage of features related to labels

Datasets
%Features retained related to at least

25% labels 50% labels 75% labels 1 label

Emotions 72 28 11 72

Image 68 27 9 84

Scene 84 12 2 68

Yeast 45 8 1 77

CAL500 1 1 0 75

Figure 6.23: Percentage of features related to labels

When features related to at least 25% of labels are used, then no growth is seen

in the performance of MLFLD-MAXP and MLFLD, as shown in Table 6.170. Hence the

remaining thresholds are not used further. Only ML datasets obtained using thresholds 1

and 25% are used further.
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Table 6.170: Effect of feature selection with different threshold
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Proposed and competing methods are executed with ML datasets generated by

the MLFS algorithm. Performance comparison is shown in Table 6.171 to 6.180.

Table 6.171: Performance of ML methods on selected features for Hamming loss (↓)

Dataset BR LP CC RAkEL BRkNN BPMLL MLkNN MLFLD MAXP

Emotions 0.2515 0.2603 0.2576 0.2498 0.1925 0.2093 0.1907 0.1969 0.1986

Image 0.2237 0.2407 0.2267 0.2005 0.1740 0.4537 0.1698 0.1608 0.1613

Scene 0.1333 0.1480 0.1426 0.1180 0.0960 0.2249 0.0886 0.0801 0.0828

Yeast 0.2441 0.2823 0.2697 0.2505 0.1945 0.2242 0.1918 0.2039 0.2036

CAL500 0.1537 0.2046 0.1747 0.1530 0.1422 0.2600 0.1400 0.1395 0.1395

Average 0.2013 0.2272 0.2143 0.1944 0.1598 0.2744 0.1562 0.1562 0.1572

Rank 6 8 7 5 4 9 1 1 3

Table 6.172: Performance of ML methods on selected features for Ranking loss (↓)

Dataset BR LP CC RAkEL BRkNN BPMLL MLkNN MLFLD MAXP

Emotions 0.3067 0.3233 0.3209 0.2491 0.1694 0.1663 0.1607 0.1623 0.1623

Image 0.2947 0.3175 0.2955 0.2145 0.1836 0.3833 0.1743 0.1604 0.1604

Scene 0.2340 0.2196 0.2352 0.1345 0.0927 0.1409 0.0782 0.0707 0.0707

Yeast 0.3059 0.4013 0.3267 0.3566 0.1750 0.1757 0.1630 0.1720 0.1720

CAL500 0.2610 0.6509 0.3564 0.6115 0.2318 0.1770 0.1837 0.1831 0.1831

Average 0.2805 0.3825 0.3069 0.3132 0.1705 0.2086 0.1520 0.1497 0.1497

Rank 6 9 7 8 4 5 3 1 1

Table 6.173: Performance of ML methods on selected features for One error (↓)

Dataset BR LP CC RAkEL BRkNN BPMLL MLkNN MLFLD MAXP

Emotions 0.4201 0.4269 0.3981 0.3576 0.2596 0.2919 0.2545 0.2576 0.2576

Image 0.4545 0.4745 0.4405 0.3565 0.3350 0.6315 0.3240 0.2836 0.2836

Scene 0.3997 0.4101 0.3835 0.3033 0.2651 0.4442 0.2289 0.2112 0.2112

Yeast 0.3914 0.5226 0.3599 0.3144 0.2209 0.2334 0.2135 0.2369 0.2369

CAL500 0.6454 0.9880 0.7071 0.7747 0.1913 0.1355 0.1195 0.1240 0.1240

Average 0.4622 0.5644 0.4578 0.4213 0.2544 0.3473 0.2281 0.2227 0.2227

Rank 8 9 7 6 4 5 3 1 1
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Table 6.174: Performance of ML methods on selected features for Coverage (↓)

Dataset BR LP CC RAkEL BRkNN BPMLL MLkNN MLFLD MAXP

Emotions 2.6019 2.6051 2.6775 2.2965 1.8341 1.7818 1.7882 1.7644 1.7644

Image 1.4470 1.5145 1.4480 1.1180 0.9925 1.7610 0.9650 0.9134 0.9134

Scene 1.2755 1.1953 1.2813 0.7661 0.5476 0.7910 0.4790 0.4392 0.4392

Yeast 9.2926 9.3328 8.9449 9.9916 6.4910 6.4052 6.2039 6.2793 6.2793

CAL500 165.901 170.916 170.018 170.955 152.008 128.343 131.372 130.202 130.202

Average 36.1036 37.1127 36.8739 37.0256 32.3747 27.8166 28.1617 27.9197 27.9197

Rank 6 9 7 8 5 1 4 2 2

Table 6.175: Performance of ML methods on selected features for Avg. Precision (↑)

Dataset BR LP CC RAkEL BRkNN BPMLL MLkNN MLFLD MAXP

Emotions 0.6850 0.6816 0.6880 0.7303 0.8036 0.7931 0.8071 0.8063 0.8063

Image 0.6892 0.6727 0.6955 0.7623 0.7853 0.5827 0.7909 0.8121 0.8121

Scene 0.7215 0.7234 0.7277 0.8059 0.8428 0.7433 0.8632 0.8745 0.8745

Yeast 0.6273 0.5697 0.6234 0.6150 0.7658 0.7549 0.7724 0.7643 0.7643

CAL500 0.3902 0.1172 0.3177 0.1386 0.4573 0.5089 0.4904 0.4916 0.4916

Average 0.6226 0.5529 0.6105 0.6104 0.7310 0.6766 0.7448 0.7498 0.7498

Rank 6 9 7 8 4 5 3 1 1

Table 6.176: Performance of ML methods on selected features for Accuracy (↑)

Dataset BR LP CC RAkEL BRkNN BPMLL MLkNN MLFLD MAXP

Emotions 0.4355 0.4685 0.4639 0.4697 0.5227 0.5490 0.5509 0.5507 0.5617

Image 0.4525 0.4798 0.5042 0.5192 0.4574 0.1772 0.4975 0.5668 0.6260

Scene 0.5409 0.5796 0.5939 0.5987 0.6117 0.4105 0.6683 0.7113 0.7548

Yeast 0.4370 0.4089 0.4192 0.3797 0.5016 0.5271 0.5193 0.5036 0.5061

CAL500 0.2125 0.1908 0.2265 0.0228 0.1832 0.2985 0.1876 0.2029 0.2029

Average 0.4157 0.4255 0.4415 0.3980 0.4553 0.3925 0.4847 0.5071 0.5303

Rank 7 6 5 8 4 9 3 2 1

Table 6.177: Performance of ML methods on selected features for Subset Accuracy (↑)

Dataset BR LP CC RAkEL BRkNN BPMLL MLkNN MLFLD MAXP

Emotions 0.1853 0.2242 0.2175 0.1890 0.2766 0.2834 0.3070 0.3102 0.3136

Image 0.3000 0.3710 0.3790 0.3815 0.3940 0.0095 0.4185 0.4723 0.5198

Scene 0.4375 0.5384 0.5447 0.5235 0.5875 0.1225 0.6253 0.6658 0.7079

Yeast 0.0666 0.1328 0.1361 0.0381 0.2019 0.1303 0.1891 0.2100 0.2100

CAL500 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Average 0.1979 0.2533 0.2555 0.2264 0.2920 0.1091 0.3080 0.3317 0.3503

Rank 8 6 5 7 4 9 3 2 1
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Table 6.178: Performance of ML methods on selected features for Ex-F1 (↑)

Dataset BR LP CC RAkEL BRkNN BPMLL MLkNN MLFLD MAXP

Emotions 0.5215 0.5528 0.5477 0.5624 0.6028 0.6360 0.6304 0.6292 0.6431

Image 0.5068 0.5175 0.5478 0.5672 0.4788 0.2610 0.5242 0.5992 0.6623

Scene 0.5770 0.5935 0.6107 0.6242 0.6198 0.5207 0.6827 0.7265 0.7705

Yeast 0.5604 0.5099 0.5227 0.5042 0.6005 0.6421 0.6237 0.6006 0.6046

CAL500 0.3449 0.3099 0.3587 0.0434 0.3032 0.4516 0.3109 0.3323 0.3323

Average 0.5021 0.4967 0.5175 0.4603 0.5210 0.5023 0.5544 0.5776 0.6026

Rank 7 8 5 9 4 6 3 2 1

Table 6.179: Performance of ML methods on selected features for Macro-F1 (↑)

Dataset BR LP CC RAkEL BRkNN BPMLL MLkNN MLFLD MAXP

Emotions 0.5577 0.5718 0.5682 0.6029 0.6270 0.6656 0.6316 0.6581 0.6593

Image 0.5487 0.5161 0.5456 0.5878 0.5451 0.3096 0.5785 0.6320 0.6566

Scene 0.6365 0.5981 0.6191 0.6684 0.6900 0.5762 0.7354 0.7681 0.7746

Yeast 0.3863 0.3748 0.3862 0.2721 0.3944 0.4415 0.3883 NaN NaN

CAL500 0.2120 0.1816 0.2373 0.1240 0.1871 0.2419 0.1691 NaN NaN

Average 0.4682 0.4485 0.4713 0.4510 0.4887 0.4470 0.5006 0.6861 0.6968

Rank 6 8 5 7 4 9 3 2 1

Table 6.180: Performance of ML methods on selected features for Micro-F1 (↑)

Dataset BR LP CC RAkEL BRkNN BPMLL MLkNN MLFLD MAXP

Emotions 0.5802 0.5840 0.5796 0.6106 0.6558 0.6777 0.6716 0.6698 0.6716

Image 0.5480 0.5146 0.5461 0.5867 0.5494 0.3232 0.5818 0.6312 0.6537

Scene 0.6262 0.5875 0.6071 0.6611 0.6894 0.5542 0.7297 0.7611 0.7653

Yeast 0.5834 0.5345 0.5463 0.5293 0.6354 0.6547 0.6499 0.6325 0.6338

CAL500 0.3464 0.3150 0.3620 0.0452 0.3044 0.4530 0.3083 0.3306 0.3306

Average 0.5368 0.5071 0.5282 0.4866 0.5669 0.5326 0.5883 0.6050 0.6110

Rank 5 8 7 9 4 6 3 2 1
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Table 6.181: Summary of performance comparison of ML methods on selected features

Metric BR LP CC RAkEL BRkNN BPMLL MLkNN MLFLD MAXP

HamLoss 0.2013 0.2272 0.2143 0.1944 0.1598 0.2744 0.1562 0.1562 0.1572

RankLoss 0.2805 0.3825 0.3069 0.3132 0.1705 0.2086 0.1520 0.1497 0.1497

OneError 0.4622 0.5644 0.4578 0.4213 0.2544 0.3473 0.2281 0.2227 0.2227

Coverage 36.1036 37.1127 36.8739 37.0256 32.3747 27.8166 28.1617 27.9197 27.9197

AvgPrec 0.6226 0.5529 0.6105 0.6104 0.7310 0.6766 0.7448 0.7498 0.7498

Accuracy 0.4157 0.4255 0.4415 0.3980 0.4553 0.3925 0.4847 0.5071 0.5303

SubAcc 0.1979 0.2533 0.2555 0.2264 0.2920 0.1091 0.3080 0.3317 0.3503

Ex-F1 0.5021 0.4967 0.5175 0.4603 0.5210 0.5023 0.5544 0.5776 0.6026

Macro F1 0.4682 0.4485 0.4713 0.4510 0.4887 0.4470 0.5006 0.6861 0.6968

Micro F1 0.5368 0.5071 0.5282 0.4866 0.5669 0.5326 0.5883 0.6050 0.6110

Avg Rank 6.5 8 6.2 7.5 4.1 6.4 2.9 1.6 1.3

#Wins 0 0 0 0 0 1 1 4 8

Observations: Overall performance of proposed algorithms is increased mainly

because of raised performance in Image and Scene for all metrics and Emotions for few

parameters. From Table 6.181, experimentation has shown that

� MLFLD-MAXP ranked first, showing 8 wins over 10 metrics, whereas MLFLD ranked

second with 4 wins.

� MLFLD-MAXP performed slightly better than MLFLD for two accuracy and three

F-measures. Both outperformed MLkNN and other contestants.

� Both proposed algorithms are similar for one error, coverage, rank loss, and avg

precision.

� MLFLD achieved the same avg hamming loss as that of MLkNN that is not seen in

other experiments.

� The performance of MLFLD-MAXP is slightly lesser than both these algorithms.

Both algorithms outperformed compared to competing algorithms for all metrics,

except ham loss and coverage.
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6.8 Effect of instance selection on proposed algorithms

Algorithm MLIS is run with sampling with a replacement for size 60, 70, 80, 90,

100. An experiment is conducted on five datasets, and then resulting datasets are fed to

proposed algorithms.

6.8.1 Effect of instance selection on MLFLD

In this section, how MLFLD has performed, is studied when it is fed with sampled

datasets of different sizes processed by MLIS algorithm shown in Table 6.182 to 6.191.

Table 6.182: Effect of instance selection on Hamming loss (↓) for MLFLD

Dataset
MLIS + MLFLD

60 70 80 90 100

Emotions 0.2000 0.1768 0.1805 0.1682 0.1938

Image 0.1545 0.1535 0.1455 0.1440 0.1631

Scene 0.0819 0.0793 0.0802 0.0773 0.0797

Yeast 0.2010 0.1982 0.1962 0.1922 0.1981

CAL500 0.1397 0.1404 0.1383 0.1367 0.1394

Average 0.1554 0.1496 0.1481 0.1437 0.1548

Rank 5 3 2 1 4

Table 6.183: Effect of instance selection on Ranking loss (↓) for MLFLD

Dataset
MLIS + MLFLD

60 70 80 90 100

Emotions 0.1459 0.1361 0.1386 0.1274 0.1483

Image 0.1579 0.1477 0.1363 0.1314 0.1570

Scene 0.0731 0.0653 0.0637 0.0620 0.0682

Yeast 0.1632 0.1560 0.1515 0.1478 0.1689

CAL500 0.1709 0.1662 0.1616 0.1579 0.1835

Average 0.1422 0.1343 0.1303 0.1253 0.1452

Rank 4 3 2 1 5
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Table 6.184: Effect of instance selection on One error (↓) for MLFLD

Dataset
MLIS + MLFLD

60 70 80 90 100

Emotions 0.2457 0.2244 0.2383 0.2208 0.2492

Image 0.2878 0.2852 0.2626 0.2562 0.2916

Scene 0.2125 0.2054 0.2010 0.1981 0.2050

Yeast 0.2374 0.2225 0.2233 0.2212 0.2378

CAL500 0.0933 0.1086 0.1025 0.0889 0.1160

Average 0.2153 0.2092 0.2055 0.1970 0.2199

Rank 4 3 2 1 5

Table 6.185: Effect of instance selection on Coverage (↓) for MLFLD

Dataset
MLIS + MLFLD

60 70 80 90 100

Emotions 1.7057 1.6585 1.6404 1.5642 1.7102

Image 0.8816 0.8392 0.7911 0.7860 0.8964

Scene 0.4493 0.4101 0.4005 0.3898 0.4258

Yeast 6.2042 6.0734 6.0202 5.9470 6.2905

CAL500 117.2167 113.1657 113.6925 109.6889 130.5240

Average 25.2915 24.4294 24.5089 23.6752 27.9694

Rank 4 2 3 1 5

Table 6.186: Effect of instance selection on Avg. Precision (↑) for MLFLD

Dataset
MLIS + MLFLD

60 70 80 90 100

Emotions 0.8194 0.8343 0.8306 0.8421 0.8183

Image 0.8108 0.8166 0.8312 0.8343 0.8105

Scene 0.8735 0.8799 0.8837 0.8861 0.8785

Yeast 0.7706 0.7787 0.7838 0.7857 0.7648

CAL500 0.5048 0.5054 0.5208 0.5301 0.4918

Average 0.7558 0.7630 0.7700 0.7757 0.7528

Rank 4 3 2 1 5
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Table 6.187: Effect of instance selection on Accuracy (↑) for MLFLD

Dataset
MLIS + MLFLD

60 70 80 90 100

Emotions 0.5198 0.5606 0.5699 0.6025 0.5483

Image 0.5504 0.5668 0.5878 0.5998 0.5588

Scene 0.6912 0.6865 0.6925 0.7093 0.7083

Yeast 0.5227 0.5329 0.5403 0.5525 0.5116

CAL500 0.2069 0.2146 0.2255 0.2382 0.2023

Average 0.4982 0.5123 0.5232 0.5405 0.5059

Rank 5 3 2 1 4

Table 6.188: Effect of instance selection on Subset Accuracy (↑) for MLFLD

Dataset
MLIS + MLFLD

60 70 80 90 100

Emotions 0.2571 0.3268 0.3532 0.3717 0.3051

Image 0.4587 0.4710 0.5035 0.5086 0.4632

Scene 0.6486 0.6464 0.6484 0.6602 0.6629

Yeast 0.1898 0.2053 0.2176 0.2217 0.2046

CAL500 0.0000 0.0000 0.0000 0.0000 0.0000

Average 0.3108 0.3299 0.3445 0.3524 0.3272

Rank 5 3 2 1 4

Table 6.189: Effect of instance selection on Ex-F1 (↑) for MLFLD

Dataset
MLIS + MLFLD

60 70 80 90 100

Emotions 0.6082 0.6383 0.6438 0.6783 0.6274

Image 0.5815 0.5993 0.6167 0.6306 0.5916

Scene 0.7054 0.6999 0.7073 0.7258 0.7235

Yeast 0.6231 0.6338 0.6385 0.6507 0.6109

CAL500 0.3369 0.3467 0.3612 0.3762 0.3311

Average 0.5710 0.5836 0.5935 0.6123 0.5769

Rank 5 3 2 1 4
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Table 6.190: Effect of instance selection on Macro-F1 (↑) for MLFLD

Dataset
MLIS + MLFLD

60 70 80 90 100

Emotions 0.6043 0.6532 0.6726 0.6933 0.6584

Image 0.6240 0.6419 0.6594 0.6691 0.6287

Scene 0.7510 0.7518 0.7516 0.7657 0.7683

Yeast 0.4416 0.4609 0.4667 0.4813 NaN

CAL500 NaN NaN NaN NaN NaN

Average 0.6052 0.6270 0.6376 0.6524 0.6851

Rank 5 4 3 2 1

Table 6.191: Effect of instance selection on Micro-F1 (↑) for MLFLD

Dataset
MLIS + MLFLD

60 70 80 90 100

Emotions 0.6523 0.6914 0.6927 0.7159 0.6727

Image 0.6323 0.6431 0.6612 0.6689 0.6259

Scene 0.7501 0.7553 0.7552 0.7674 0.7617

Yeast 0.6510 0.6599 0.6656 0.6762 0.6426

CAL500 0.3381 0.3499 0.3640 0.3807 0.3294

Average 0.6714 0.6874 0.6937 0.7071 0.6757

Rank 5 3 2 1 4
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Table 6.192: Summary of effect of instance selection on MLFLD performance

MLIS + MLFLD
Dataset

60 70 80 90 100

HamLoss 0.1554 0.1496 0.1481 0.1437 0.1548

RankLoss 0.1422 0.1343 0.1303 0.1253 0.1452

OneError 0.2153 0.2092 0.2055 0.1970 0.2199

Coverage 25.2915 24.4294 24.5089 23.6752 27.9694

AvgPrec 0.7558 0.7630 0.7700 0.7757 0.7528

Accuracy 0.4982 0.5123 0.5232 0.5405 0.5059

SubAcc 0.3108 0.3299 0.3445 0.3524 0.3272

Ex-F1 0.5710 0.5836 0.5935 0.6123 0.5769

Macro F1 0.6052 0.6270 0.6376 0.6524 0.6851

Micro F1 0.6714 0.6874 0.6937 0.7071 0.6757

Avg Rank 4.6 3.0 2.2 1.1 4.1

#Wins 0 0 0 9 1

Observations: Table 6.192 has shown that instance selection with 70, 80, and

90% replacement has been proved effective to boost MLFLD functionality. 90% is noticed to

make more progress. 60% of replacement has not worked well. For the last five parameters,

growth is seen in all datasets except Scene for 2 parameters. Emotions seemed to work well

for 70 than 80.

6.8.2 Effect of instance selection on MLFLD-MAXP

The performance of MLFLD-MAXP on sampled data is examined in this section

for 5 sizes separately.
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Table 6.193: Effect of instance selection on Hamming Loss (↓) for MLFLD-MAXP

Dataset
MLIS + MLFLD-MAXP

60 70 80 90 100

Emotions 0.2010 0.1797 0.1812 0.1692 0.1938

Image 0.1598 0.1591 0.1466 0.1446 0.1656

Scene 0.0843 0.0812 0.0815 0.0804 0.0812

Yeast 0.2011 0.1980 0.1962 0.1922 0.1977

CAL500 0.1397 0.1404 0.1383 0.1367 0.1394

Average 0.1572 0.1517 0.1488 0.1446 0.1555

Rank 5 3 2 1 4

Table 6.194: Effect of instance selection on Ranking Loss (↓) for MLFLD-MAXP

Dataset
MLIS + MLFLD-MAXP

60 70 80 90 100

Emotions 0.1459 0.1361 0.1386 0.1274 0.1483

Image 0.1579 0.1477 0.1363 0.1314 0.1570

Scene 0.0731 0.0653 0.0637 0.0620 0.0682

Yeast 0.1632 0.1560 0.1515 0.1478 0.1689

CAL500 0.1709 0.1662 0.1616 0.1579 0.1835

Average 0.1422 0.1343 0.1303 0.1253 0.1452

Rank 4 3 2 1 5

Table 6.195: Effect of instance selection on One Error (↓) for MLFLD-MAXP

Dataset
MLIS + MLFLD-MAXP

60 70 80 90 100

Emotions 0.2457 0.2244 0.2383 0.2208 0.2492

Image 0.2878 0.2852 0.2626 0.2562 0.2916

Scene 0.2125 0.2054 0.2010 0.1981 0.2050

Yeast 0.2374 0.2225 0.2233 0.2212 0.2378

CAL500 0.0933 0.1086 0.1025 0.0889 0.1160

Average 0.2153 0.2092 0.2055 0.1970 0.2199

Rank 4 3 2 1 5
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Table 6.196: Effect of instance selection on Coverage (↓) for MLFLD-MAXP

Dataset
MLIS + MLFLD-MAXP

60 70 80 90 100

Emotions 1.7057 1.6585 1.6404 1.5642 1.7102

Image 0.8816 0.8392 0.7911 0.7860 0.8964

Scene 0.4493 0.4101 0.4005 0.3898 0.4258

Yeast 6.2042 6.0734 6.0202 5.9470 6.2905

CAL500 117.2167 113.1657 113.6925 109.6889 130.5240

Average 25.2915 24.4294 24.5089 23.6752 27.9694

Rank 4 2 3 1 5

Table 6.197: Effect of instance selection on Average Precision (↑) for MLFLD-MAXP

Dataset
MLIS + MLFLD-MAXP

60 70 80 90 100

Emotions 0.8194 0.8343 0.8306 0.8421 0.8183

Image 0.8108 0.8166 0.8312 0.8343 0.8105

Scene 0.8735 0.8799 0.8837 0.8861 0.8785

Yeast 0.7706 0.7787 0.7838 0.7857 0.7648

CAL500 0.5048 0.5054 0.5208 0.5301 0.4918

Average 0.7558 0.7630 0.7700 0.7757 0.7528

Rank 4 3 2 1 5

Table 6.198: Effect of instance selection on Accuracy (↑) for MLFLD-MAXP

Dataset
MLIS + MLFLD-MAXP

60 70 80 90 100

Emotions 0.5426 0.5846 0.5908 0.6186 0.5627

Image 0.6259 0.6244 0.6576 0.6588 0.6169

Scene 0.7527 0.7597 0.7600 0.7635 0.7599

Yeast 0.5232 0.5346 0.5413 0.5533 0.5140

CAL500 0.2069 0.2146 0.2255 0.2382 0.2023

Average 0.5303 0.5436 0.5550 0.5665 0.5312

Rank 5 3 2 1 4
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Table 6.199: Effect of instance selection on Subset Accuracy (↑) for MLFLD-MAXP

Dataset
MLIS + MLFLD-MAXP

60 70 80 90 100

Emotions 0.2743 0.3463 0.3681 0.3849 0.3136

Image 0.5245 0.5196 0.5647 0.5564 0.5108

Scene 0.7056 0.7149 0.7115 0.7116 0.7117

Yeast 0.1898 0.2053 0.2176 0.2217 0.2046

CAL500 0.0000 0.0000 0.0000 0.0000 0.0000

Average 0.3388 0.3572 0.3724 0.3749 0.3481

Rank 5 3 2 1 4

Table 6.200: Effect of instance selection on Ex-F1 (↑) for MLFLD-MAXP

Dataset
MLIS + MLFLD-MAXP

60 70 80 90 100

Emotions 0.6330 0.6639 0.6668 0.6953 0.6441

Image 0.6602 0.6598 0.6892 0.6934 0.6532

Scene 0.7684 0.7747 0.7762 0.7809 0.7761

Yeast 0.6240 0.6363 0.6400 0.6519 0.6145

CAL500 0.3369 0.3467 0.3612 0.3762 0.3311

Average 0.6045 0.6163 0.6267 0.6395 0.6038

Rank 4 3 2 1 5

Table 6.201: Effect of instance selection on Macro-F1 (↑) for MLFLD-MAXP

Dataset
MLIS + MLFLD-MAXP

60 70 80 90 100

Emotions 0.6109 0.6546 0.6756 0.6952 0.6609

Image 0.6482 0.6566 0.6827 0.6901 0.6482

Scene 0.7657 0.7746 0.7732 0.7789 0.7795

Yeast 0.4416 0.4613 0.4677 0.4815 NaN

CAL500 NaN NaN NaN NaN NaN

Average 0.6166 0.6368 0.6498 0.6614 0.6962

Rank 5 4 3 2 1
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Table 6.202: Effect of instance selection on Micro-F1 (↑) for MLFLD-MAXP

Dataset
MLIS + MLFLD-MAXP

60 70 80 90 100

Emotions 0.6575 0.6939 0.6970 0.7177 0.6766

Image 0.6526 0.6565 0.6829 0.6883 0.6449

Scene 0.7611 0.7692 0.7691 0.7732 0.7706

Yeast 0.6512 0.6606 0.6659 0.6764 0.6439

CAL500 0.3381 0.3499 0.3640 0.3807 0.3294

Average 0.6121 0.6260 0.6358 0.6473 0.6131

Rank 5 3 2 1 4

Table 6.203: Summary of effect of instance selection on MAXP performance

MLIS + MLFLD-MAXP
Dataset

60 70 80 90 100

HamLoss 0.1572 0.1517 0.1488 0.1446 0.1555

RankLoss 0.1422 0.1343 0.1303 0.1253 0.1452

OneError 0.2153 0.2092 0.2055 0.1970 0.2199

Coverage 25.2915 24.4294 24.5089 23.6752 27.9694

AvgPrec 0.7558 0.7630 0.7700 0.7757 0.7528

Accuracy 0.5303 0.5436 0.5550 0.5665 0.5312

SubAcc 0.3388 0.3572 0.3724 0.3749 0.3481

Ex-F1 0.6045 0.6163 0.6267 0.6395 0.6038

Macro F1 0.6166 0.6368 0.6498 0.6614 0.6962

Micro F1 0.6121 0.6260 0.6358 0.6473 0.6131

Avg Rank 4.5 3.0 2.2 1.1 4.2

#Wins 0 0 0 9 1

Observations: Table 6.203 has shown that instance selection with 70, 80, and

90% replacement is more effective on MLFLD-MAXP than 60%. They worked well on all

datasets except Scene for the last 5 parameters. Size 90 is seen as useful for the growing

performance of MLFLD-MAXP.
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6.8.3 Comparison of MLFLD and MLFLD-MAXP performance to check

the effect of instance selection

How the use of sampled data affects, the performance of the proposed algorithms

is studied in this section.

Table 6.204: Summary of effect of instance selection on MLFLD and MLFLD-MAXP
performance

MLIS + MLFLD MLIS + MAXP
Metric

60 70 80 90 100 60 70 80 90 100

HamLoss 0.1554 0.1496 0.1481 0.1437 0.1548 0.1572 0.1517 0.1488 0.1446 0.1555

RankLoss 0.1422 0.1343 0.1303 0.1253 0.1452 0.1422 0.1343 0.1303 0.1253 0.1452

OneError 0.2153 0.2092 0.2055 0.1970 0.2199 0.2153 0.2092 0.2055 0.1970 0.2199

Coverage 25.2915 24.4294 24.5089 23.6752 27.9694 25.2915 24.4294 24.5089 23.6752 27.9694

AvgPrec 0.7558 0.7630 0.7700 0.7757 0.7528 0.7558 0.7630 0.7700 0.7757 0.7528

Accuracy 0.4982 0.5123 0.5232 0.5405 0.5059 0.5303 0.5436 0.5550 0.5665 0.5312

SubAcc 0.3108 0.3299 0.3445 0.3524 0.3272 0.3388 0.3572 0.3724 0.3749 0.3481

Ex-F1 0.5710 0.5836 0.5935 0.6123 0.5769 0.6045 0.6163 0.6267 0.6395 0.6038

Macro F1 0.6052 0.6270 0.6376 0.6524 0.6851 0.6166 0.6368 0.6498 0.6614 0.6962

Micro F1 0.6714 0.6874 0.6937 0.7071 0.6757 0.6121 0.6260 0.6358 0.6473 0.6131

Avg Rank 8.1 5.8 4.5 2.2 7.6 7.5 4.8 3.6 1.8 7.1

#Wins 0 0 0 6 0 0 0 0 7 1

Observations: Table 6.204 has shown that MLFLD-MAXP has beaten MLFLD

for the same sample size. When proposed algorithms are used on datasets preprocessed

with instance selection with 70, 80, and 90 percent instances, increasing progress is viewed

over proposed algorithms. 60% is not seemed to help for enhancement, but still better

than that of contesting algorithm. MLFLD-MAXP with 90% size has outshined with the

smallest avg rank 108, and 7 wins out of 10. It is followed by MLFLD with 90 showing avg

rank 2.2 and 6 wins.

For accuracy, subset accuracy, and ex-F1, MLFLD-MAXP showed more progress

than MLFLD after instance selection comparatively. For one error, coverage, avg precision,

and rank loss, MLFLD-MAXP, and MLFLD are observed to work similarly to the same

size of datasets. For macro-F1, no result computed for few datasets, hence challenging to

compare. But for micro-F1 and hamming loss, MLFLD-MAXP worked well than MLFLD

for the same size.
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6.8.4 Comparison of effect of instance selection on proposed algorithms

Datasets are fed to the MLIS algorithm with two parameters, namely sampling

with replacement and sample size 80. Obtained datasets are used for experimentation. As

observed from attribute selection experimentation, MLkNN is a strong contestant among

the remaining algorithms. Hence in the next two sections, only MLkNN is used for perfor-

mance comparison. MLDB is used next to denote a multi-label dataset (Table 6.205 and

6.206).

Table 6.205: Performance of proposed algorithms on sampled MLDB

(a) Hamming Loss (_) (b) Ranking Loss (_)

Dataset MLkNN MLFLD MAXP Dataset MLkNN MLFLD MAXP

Emotions 0.1937 0.1805 0.1812 Emotions 0.1643 0.1386 0.1386

Image 0.1557 0.1455 0.1466 Image 0.1553 0.1363 0.1363

SceneI 0.0839 0.0802 0.0815 SceneI 0.0682 0.0637 0.0637

Yeast 0.1912 0.1962 0.1962 Yeast 0.1536 0.1515 0.1515

CAL500 0.1386 0.1383 0.1372 CAL500 0.1623 0.1616 0.1603

Average 0.1526 0.1481 0.1485 Average 0.1407 0.1303 0.1301

Rank 3 1 2 Rank 3 2 1

(c) One Error (_) (d) Coverage (_)

Dataset MLkNN MLFLD MAXP Dataset MLkNN MLFLD MAXP

Emotions 0.2891 0.2383 0.2383 Emotions 1.7556 1.6404 1.6404

Image 0.2969 0.2626 0.2626 Image 0.8650 0.7911 0.7911

SceneI 0.2094 0.2010 0.2010 SceneI 0.4249 0.4005 0.4005

Yeast 0.1992 0.2233 0.2233 Yeast 6.1216 6.0202 6.0202

CAL500 0.0999 0.1025 0.1025 CAL500 113.2663 113.6925 113.0725

Average 0.2189 0.2055 0.2055 Average 24.4867 24.5089 24.3849

Rank 3 1 1 Rank 2 3 1
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Table 6.206: Performance of proposed algorithms on sampled MLDB

(e) Average Precision (^) (f) Accuracy (^)

Dataset MLkNN MLFLD MAXP Dataset MLkNN MLFLD MAXP

Emotions 0.8003 0.8306 0.8306 Emotions 0.5367 0.5699 0.5908

Image 0.8089 0.8312 0.8312 Image 0.5289 0.5878 0.6576

SceneI 0.8773 0.8837 0.8837 SceneI 0.6816 0.6925 0.7600

Yeast 0.7849 0.7838 0.7838 Yeast 0.5269 0.5403 0.5413

CAL500 0.5176 0.5208 0.5249 CAL500 0.2213 0.2255 0.2344

Average 0.7578 0.7700 0.7708 Average 0.4991 0.5232 0.5568

Rank 3 2 1 Rank 3 2 1

(g) Subset Accuracy (^) (h) Ex-F1 (^)

Dataset MLkNN MLFLD MAXP Dataset MLkNN MLFLD MAXP

Emotions 0.3121 0.3532 0.3681 Emotions 0.6113 0.6438 0.6668

Image 0.4494 0.5035 0.5647 Image 0.5559 0.6167 0.6892

SceneI 0.6286 0.6484 0.7115 SceneI 0.6994 0.7073 0.7762

Yeast 0.1847 0.2176 0.2176 Yeast 0.6315 0.6385 0.6400

CAL500 0 0 0 CAL500 0.3560 0.3612 0.3720

Average 0.3150 0.3445 0.3724 Average 0.5708 0.5935 0.6288

Rank 3 2 1 Rank 3 2 1

(i) Macro-F1 (^) (j) Micro-F1 (^)

Dataset MLkNN MLFLD MAXP Dataset MLkNN MLFLD MAXP

Emotions 0.6253 0.6726 0.6756 Emotions 0.6637 0.6927 0.6970

Image 0.6210 0.6594 0.6827 Image 0.6231 0.6612 0.6829

SceneI 0.7492 0.7516 0.7732 SceneI 0.7476 0.7552 0.7691

Yeast 0.4151 0.4667 0.4677 Yeast 0.6576 0.6656 0.6659

CAL500 0.2498 NaN NaN CAL500 0.3587 0.3640 0.3769

Average 0.5321 0.6376 0.6498 Average 0.6101 0.6277 0.6384

Rank 3 2 1 Rank 3 2 1
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Table 6.207: Summary of MLFLD and MLFLD-MAXP performance comparison on
sampled MLDB

Metric MLkNN MLFLD MLFLD-MAXP

HamLoss 0.1526 0.1481 0.1485

RankLoss 0.1407 0.1303 0.1301

OneError 0.2189 0.2055 0.2055

Coverage 24.4867 24.5089 24.3849

AvgPrec 0.7578 0.7700 0.7708

Accuracy 0.4991 0.5232 0.5568

SubAcc 0.3150 0.3445 0.3724

Ex-F1 0.5708 0.5935 0.6288

Macro F1 0.5321 0.6376 0.6498

Micro F1 0.6101 0.6277 0.6384

Avg Rank 2.9 1.9 1.1

#Wins 0 2 9

Observations: Pattern observed in Table 6.207 is slightly different than all the

remaining experiments. MLFLD-MAXP exceeded MLFLD for 8 parameters. Both algo-

rithms are similar for one error, while MLFLD is better for ham loss. Both algorithms

defeated MLkNN, except for coverage by MLFLD.

6.8.5 Performance comparison of instance selection experiments with dif-

ferent sample sizes

The performance of MLFLD, MLFLD-MAXP, and MLkNN is compared for sam-

ples obtained after replacement with size 60, 70, 80, 90, and 100 percent. It is represented

in Table 6.208. Figures (b), (c), (d), and (e) show only two algorithms as both MLFLD

and MLFLD-MAXP have the same performance for corresponding parameters. All these

figures show that algorithms worked well for sample sizes 80 and 90. Performance for size

90 seems superior to the performance obtained for the whole dataset (size 100).
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Table 6.208: Performance comparison of instance selection experiments with different
sample size
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6.9 Effect of Feature and Instance selection on proposed al-

gorithms

As seen in section 6.7, only feature selection has not proven useful for performance

improvement in this work. Also, only instance selection with 70, 80, and 90 sample sizes

have proven to perform better than sample size 60 when used before MLFLD and MLFLD-

MAXP. This section combines both using the MLFSIS algorithm described in chapter 4.

6.9.1 Effect of Feature and Instance selection on MLFLD

In this section, instance selection is made on data for which already multi-label

feature selection is carried out.

Table 6.209: Effect of feature and instance selection on Hamming Loss (↓) for MLFLD

Dataset
MLFSIS + MLFLD

60 70 80 90 100

Emotions 0.1876 0.1870 0.1887 0.1855 0.1938

Image 0.1546 0.1523 0.1486 0.1404 0.1631

Scene 0.0819 0.0788 0.0787 0.0813 0.0797

Yeast 0.2066 0.1967 0.1926 0.1864 0.1981

CAL500 0.1376 0.1378 0.1372 0.1356 0.1394

Average 0.1537 0.1505 0.1492 0.1458 0.1548

Rank 4 3 2 1 5
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Table 6.210: Effect of feature and instance selection on Ranking Loss (↓) for MLFLD

Dataset
MLFSIS + MLFLD

60 70 80 90 100

Emotions 0.1425 0.1541 0.1410 0.1410 0.1483

Image 0.1444 0.1441 0.1389 0.1344 0.1570

Scene 0.0675 0.0666 0.0658 0.0654 0.0682

Yeast 0.1725 0.1593 0.1526 0.1457 0.1689

CAL500 0.1689 0.1634 0.1603 0.1555 0.1835

Average 0.1392 0.1375 0.1317 0.1284 0.1452

Rank 4 3 2 1 5

Table 6.211: Effect of feature and instance selection on One Error (↓) for MLFLD

Dataset
MLFSIS + MLFLD

60 70 80 90 100

Emotions 0.2229 0.2390 0.2234 0.2340 0.2492

Image 0.2702 0.2766 0.2652 0.2568 0.2916

Scene 0.2049 0.2083 0.2016 0.1986 0.2050

Yeast 0.2402 0.2201 0.2104 0.2106 0.2378

CAL500 0.1000 0.0914 0.1025 0.1089 0.1160

Average 0.2076 0.2071 0.2006 0.2018 0.2199

Rank 4 3 1 2 5

Table 6.212: Effect of feature and instance selection on Coverage (↓) for MLFLD

Dataset
MLFSIS + MLFLD

60 70 80 90 100

Emotions 1.7229 1.7585 1.6745 1.6358 1.7102

Image 0.8265 0.8214 0.8023 0.7910 0.8964

Scene 0.4215 0.4149 0.4125 0.4088 0.4258

Yeast 6.3672 6.1633 6.0793 5.8995 6.2905

CAL500 117.1300 112.4486 113.0725 109.2311 130.5240

Average 25.2936 24.3213 24.4082 23.5932 27.9694

Rank 4 2 3 1 5
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Table 6.213: Effect of feature and instance selection on Average Precision (↑) for MLFLD

Dataset
MLFSIS + MLFLD

60 70 80 90 100

Emotions 0.8293 0.8157 0.8322 0.8291 0.8183

Image 0.8253 0.8234 0.8298 0.8351 0.8105

Scene 0.8793 0.8785 0.8816 0.8827 0.8785

Yeast 0.7618 0.7778 0.7860 0.7910 0.7648

CAL500 0.5103 0.5182 0.5249 0.5319 0.4918

Average 0.7612 0.7627 0.7709 0.7740 0.7528

Rank 4 3 2 1 5

Table 6.214: Effect of feature and instance selection on Accuracy (↑) for MLFLD

Dataset
MLFSIS + MLFLD

60 70 80 90 100

Emotions 0.5526 0.5492 0.5649 0.5759 0.5483

Image 0.5656 0.5720 0.6016 0.6118 0.5588

Scene 0.7023 0.6990 0.7118 0.7001 0.7083

Yeast 0.5112 0.5306 0.5352 0.5583 0.5116

CAL500 0.2141 0.2260 0.2344 0.2439 0.2023

Average 0.5092 0.5154 0.5296 0.5380 0.5059

Rank 4 3 2 1 5

Table 6.215: Effect of feature and instance selection on Subset Accuracy (↑) for MLFLD

Dataset
MLFSIS + MLFLD

60 70 80 90 100

Emotions 0.3029 0.3049 0.3447 0.3396 0.3051

Image 0.4787 0.4860 0.5097 0.5186 0.4632

Scene 0.6535 0.6577 0.6661 0.6514 0.6629

Yeast 0.1939 0.2112 0.2155 0.2290 0.2046

CAL500 0.0000 0.0000 0.0000 0.0000 0.0000

Average 0.3258 0.3320 0.3472 0.3477 0.3272

Rank 5 3 2 1 4
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Table 6.216: Effect of feature and instance selection on Ex-F1 (↑) for MLFLD

Dataset
MLFSIS + MLFLD

60 70 80 90 100

Emotions 0.6363 0.6338 0.6417 0.6543 0.6274

Image 0.5953 0.6011 0.6329 0.6432 0.5916

Scene 0.7187 0.7129 0.7272 0.7164 0.7235

Yeast 0.6102 0.6288 0.6326 0.6552 0.6109

CAL500 0.3457 0.3617 0.3720 0.3838 0.3311

Average 0.5812 0.5877 0.6013 0.6106 0.5769

Rank 4 3 2 1 5

Table 6.217: Effect of feature and instance selection on Macro-F1 (↑) for MLFLD

Dataset
MLFSIS + MLFLD

60 70 80 90 100

Emotions 0.6319 0.6453 0.6584 0.6639 0.6584

Image 0.6316 0.6375 0.6634 0.6805 0.6287

Scene 0.7577 0.7599 0.7659 0.7568 0.7683

Yeast 0.4378 0.4617 0.4880 0.4976 NaN

CAL500 NaN NaN NaN NaN NaN

Average 0.6148 0.6261 0.6439 0.6497 0.6851

Rank 5 4 3 2 1

Table 6.218: Effect of feature and instance selection on Micro-F1 (↑) for MLFLD

Dataset
MLFSIS + MLFLD

60 70 80 90 100

Emotions 0.6761 0.6785 0.6822 0.6887 0.6727

Image 0.6386 0.6443 0.6655 0.6808 0.6259

Scene 0.7551 0.7612 0.7650 0.7559 0.7617

Yeast 0.6402 0.6578 0.6635 0.6822 0.6426

CAL500 0.3476 0.3647 0.3769 0.3890 0.3294

Average 0.6775 0.6855 0.6941 0.7019 0.6757

Rank 4 3 2 1 5
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Table 6.219: Summary of effect of feature and instance selection on MLFLD performance

MLFSIS + MLFLD
Metric

60 70 80 90 100

HamLoss 0.1537 0.1505 0.1492 0.1458 0.1548

RankLoss 0.1392 0.1375 0.1317 0.1284 0.1452

OneError 0.2076 0.2071 0.2006 0.2018 0.2199

Coverage 25.2936 24.3213 24.4082 23.5932 27.9694

AvgPrec 0.7612 0.7627 0.7709 0.7740 0.7528

Accuracy 0.5092 0.5154 0.5296 0.5380 0.5059

SubAcc 0.3258 0.332 0.3472 0.3477 0.3272

Ex-F1 0.5812 0.5877 0.6013 0.6106 0.5769

Macro F1 0.6148 0.6261 0.6439 0.6497 0.6851

Micro F1 0.6775 0.6855 0.6941 0.7019 0.6757

Avg Rank 4.2 3.0 2.1 1.2 4.5

#Wins 0 0 1 8 1

Observations: From Table 6.219, datasets preprocessed with multi-label feature

and instance selection (MLFSIS) algorithm are worthwhile for upgrading MLFLD function-

ality for all sample sizes used. 80 and 90% seemed more appropriate for most of the cases.

Size 90 is more effective, showing the smallest avg rank 1.2 and maximum wins 8.

6.9.2 Effect of Feature and Instance selection on MLFLD-MAXP

In this section, the functionality of MLFLD-MAXP is examined on datasets pre-

processed by the MLFSIS algorithm on 5 datasets.
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Table 6.220: Effect of feature and instance selection on Hamming Loss (↓) for MLFLD-
MAXP

Dataset
MLFSIS + MLFLD-MAXP

60 70 80 90 100

Emotions 0.1833 0.1894 0.1879 0.1862 0.1938

Image 0.1538 0.1528 0.1508 0.1465 0.1656

Scene 0.0815 0.0817 0.0806 0.0812 0.0812

Yeast 0.2066 0.1965 0.1928 0.1865 0.1977

CAL500 0.1376 0.1378 0.1372 0.1356 0.1394

Average 0.1526 0.1516 0.1499 0.1472 0.1555

Rank 4 3 2 1 5

Table 6.221: Effect of feature and instance selection on Ranking Loss (↓) for MLFLD-
MAXP

Dataset
MLFSIS + MLFLD-MAXP

60 70 80 90 100

Emotions 0.1425 0.1541 0.1410 0.1410 0.1483

Image 0.1444 0.1441 0.1389 0.1344 0.1570

Scene 0.0675 0.0666 0.0658 0.0654 0.0682

Yeast 0.1725 0.1593 0.1526 0.1457 0.1689

CAL500 0.1689 0.1634 0.1603 0.1555 0.1835

Average 0.1392 0.1375 0.1317 0.1284 0.1452

Rank 4 3 2 1 5
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Table 6.222: Effect of feature and instance selection on One Error (↓) for MLFLD-MAXP

Dataset
MLFSIS + MLFLD-MAXP

60 70 80 90 100

Emotions 0.2229 0.2390 0.2234 0.2340 0.2492

Image 0.2702 0.2766 0.2652 0.2568 0.2916

Scene 0.2049 0.2083 0.2016 0.1986 0.2050

Yeast 0.2402 0.2201 0.2104 0.2106 0.2378

CAL500 0.1000 0.0914 0.1025 0.1089 0.1160

Average 0.2076 0.2071 0.2006 0.2018 0.2199

Rank 4 3 1 2 5

Table 6.223: Effect of feature and instance selection on Coverage (↓) for MLFLD-MAXP

Dataset
MLFSIS + MLFLD-MAXP

60 70 80 90 100

Emotions 1.7229 1.7585 1.6745 1.6358 1.7102

Image 0.8265 0.8214 0.8023 0.7910 0.8964

Scene 0.4215 0.4149 0.4125 0.4088 0.4258

Yeast 6.3672 6.1633 6.0793 5.8995 6.2905

CAL500 117.1300 112.4486 113.0725 109.2311 130.5240

Average 25.2936 24.3213 24.4082 23.5932 27.9694

Rank 4 2 3 1 5

Table 6.224: Effect of feature and instance selection on Average Precision (↑) for MLFLD-
MAXP

Dataset
MLFSIS + MLFLD-MAXP

60 70 80 90 100

Emotions 0.8293 0.8157 0.8322 0.8291 0.8183

Image 0.8253 0.8234 0.8298 0.8351 0.8105

Scene 0.8793 0.8785 0.8816 0.8827 0.8785

Yeast 0.7618 0.7778 0.7860 0.7910 0.7648

CAL500 0.5103 0.5182 0.5249 0.5319 0.4918

Average 0.7612 0.7627 0.7709 0.7740 0.7528

Rank 4 3 2 1 5
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Table 6.225: Effect of feature and instance selection on Accuracy (↑) for MLFLD-MAXP

Dataset
MLFSIS + MLFLD-MAXP

60 70 80 90 100

Emotions 0.5802 0.5630 0.5848 0.5844 0.5627

Image 0.6415 0.6443 0.6529 0.6588 0.6169

Scene 0.7596 0.7585 0.7628 0.7600 0.7599

Yeast 0.5127 0.5334 0.5369 0.5593 0.5140

CAL500 0.2141 0.2260 0.2344 0.2439 0.2023

Average 0.5416 0.5450 0.5544 0.5613 0.5312

Rank 4 3 2 1 5

Table 6.226: Effect of feature and instance selection on Subset Accuracy (↑) for MLFLD-
MAXP

Dataset
MLFSIS + MLFLD-MAXP

60 70 80 90 100

Emotions 0.3143 0.3098 0.3511 0.3434 0.3136

Image 0.5446 0.5475 0.5560 0.5603 0.5108

Scene 0.7063 0.7143 0.7141 0.7079 0.7117

Yeast 0.1939 0.2124 0.2155 0.2290 0.2046

CAL500 0.0000 0.0000 0.0000 0.0000 0.0000

Average 0.3518 0.3568 0.3673 0.3681 0.3481

Rank 4 3 2 1 5

Table 6.227: Effect of feature and instance selection on Ex-F1 (↑) for MLFLD-MAXP

Dataset
MLFSIS + MLFLD-MAXP

60 70 80 90 100

Emotions 0.6696 0.6509 0.6662 0.6644 0.6441

Image 0.6746 0.6768 0.6859 0.6920 0.6532

Scene 0.7775 0.7734 0.7793 0.7775 0.7761

Yeast 0.6124 0.6326 0.6351 0.6566 0.6145

CAL500 0.3457 0.3617 0.3720 0.3838 0.3311

Average 0.6160 0.6191 0.6277 0.6349 0.6038

Rank 4 3 2 1 5
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Table 6.228: Effect of feature and instance selection on Macro-F1 (↑) for MLFLD-MAXP

Dataset
MLFSIS + MLFLD-MAXP

60 70 80 90 100

Emotions 0.6468 0.6489 0.6665 0.6658 0.6609

Image 0.6662 0.6704 0.6781 0.7289 0.6482

Scene 0.7747 0.7723 0.7774 0.7756 0.7795

Yeast 0.4382 0.4625 0.4887 0.4985 NaN

CAL500 NaN NaN NaN NaN NaN

Average 0.6315 0.6385 0.6527 0.6672 0.6962

Rank 5 4 3 2 1

Table 6.229: Effect of feature and instance selection on Micro-F1 (↑) for MLFLD-MAXP

Dataset
MLFSIS + MLFLD-MAXP

60 70 80 90 100

Emotions 0.6901 0.6807 0.6894 0.6903 0.6766

Image 0.6669 0.6700 0.6789 0.6865 0.6449

Scene 0.7707 0.7689 0.7731 0.7707 0.7706

Yeast 0.6406 0.6587 0.6637 0.6823 0.6439

CAL500 0.3476 0.3647 0.3769 0.3890 0.3294

Average 0.6232 0.6286 0.6364 0.6438 0.6131

Rank 4 3 2 1 5
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Table 6.230: Summary of effect of feature and instance selection on MLFLD-MAXP
performance

MLIS + MLFLD-MAXP
Dataset

60 70 80 90 100

HamLoss 0.1526 0.1516 0.1499 0.1472 0.1555

RankLoss 0.1392 0.1375 0.1317 0.1284 0.1452

OneError 0.2076 0.2071 0.2006 0.2018 0.2199

Coverage 25.2936 24.3213 24.4082 23.5932 27.9694

AvgPrec 0.7612 0.7627 0.7709 0.7740 0.7528

Accuracy 0.5416 0.5450 0.5544 0.5613 0.5312

SubAcc 0.3518 0.3568 0.3673 0.3681 0.3481

Ex-F1 0.6160 0.6191 0.6277 0.6349 0.6038

Macro F1 0.6315 0.6385 0.6527 0.6672 0.6962

Micro F1 0.6232 0.6286 0.6364 0.6438 0.6131

Avg Rank 4.1 3.0 2.1 1.2 4.6

#Wins 0 0 1 8 1

Observations: From Table 6.230, it is noticed that feature and instance selection

with replacement is useful for elevating MLFLD-MAXP functionality for all sample sizes

compared to the whole dataset. Best performance is obtained for 90 with minimum avg

rank 1.2 and maximum wins 8. Performance decreases with sizes 80, 70, 60, and 100.

6.9.3 Comparison of MLFLD and MLFLD-MAXP performance to check

the effect of Feature and Instance selection

In this section, the performance of MLFLD and MLFLD-MAXP on selected fea-

tures and sampled data is studied. It is compared with the execution of algorithms on

non-processed datasets.
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Table 6.231: Summary of effect of feature and instance selection on MLFLD and MLFLD-
MAXP performance

MLIS + MLFLD MLIS + MAXP
Metric

60 70 80 90 100 60 70 80 90 100

HamLoss 0.1537 0.1505 0.1492 0.1458 0.1548 0.1526 0.1516 0.1499 0.1472 0.1555

RankLoss 0.1392 0.1375 0.1317 0.1284 0.1452 0.1392 0.1375 0.1317 0.1284 0.1452

OneError 0.2076 0.2071 0.2006 0.2018 0.2199 0.2076 0.2071 0.2006 0.2018 0.2199

Coverage 25.2936 24.3213 24.4082 23.5932 27.9694 25.2936 24.3213 24.4082 23.5932 27.9694

AvgPrec 0.7612 0.7627 0.7709 0.7740 0.7528 0.7612 0.7627 0.7709 0.7740 0.7528

Accuracy 0.5092 0.5154 0.5296 0.5380 0.5059 0.5416 0.5450 0.5544 0.5613 0.5312

SubAcc 0.3258 0.3320 0.3472 0.3477 0.3272 0.3518 0.3568 0.3673 0.3681 0.3481

Ex-F1 0.5812 0.5877 0.6013 0.6106 0.5769 0.6160 0.6191 0.6277 0.6349 0.6038

Macro F1 0.6148 0.6261 0.6439 0.6497 0.6851 0.6315 0.6385 0.6527 0.6672 0.6962

Micro F1 0.6775 0.6855 0.6941 0.7019 0.6757 0.6232 0.6286 0.6364 0.6438 0.6131

Avg Rank 7.8 5.9 4.4 2.9 8.1 6.4 4.8 3.3 2.0 7.4

#Wins 0 0 1 5 0 0 0 1 6 1

Observations: From Table 6.231, feature and instance selection are noticed to

be very useful for upgrading the performance of proposed algorithms over only feature or

instance selection. Also, MLFLD-MAXP has beaten MLFLD when compared with each

other for the same sample sizes. Experiment with 90% sample size revealed to be the most

appropriate among all, followed by 80%. MLFLD-MAXP with 90% size got minimum avg

rank 2 and max. wins 6.

6.9.4 Effect of Feature and Instance selection on proposed algorithms

compared with MLkNN

The previous two sections are based on experiments involving either attribute

or instance selection. Both are useful to reduce the dimension of a dataset in a different

direction. In this section, the effect of both these operations is combined to see the impact on

multi-label datasets. Experiments are done using sampling with and without replacement.

Later gave better performance.

252



Table 6.232: Effect of feature and instance selection for proposed algorithms compared
with MLkNN

(a) Hamming loss (_) (b) Ranking loss (_)

Dataset MLkNN MLFLD MAXP Dataset MLkNN MLFLD MAXP

Emotions 0.1947 0.1887 0.1879 Emotions 0.1554 0.1410 0.1410

Image 0.1649 0.1486 0.1508 Image 0.1540 0.1389 0.1389

Scene 0.0869 0.0787 0.0806 Scene 0.0717 0.0658 0.0658

Yeast 0.1905 0.1926 0.1928 Yeast 0.1526 0.1526 0.1526

CAL500 0.1365 0.1372 0.1372 CAL500 0.1611 0.1603 0.1603

Average 0.1547 0.1492 0.1499 Average 0.1390 0.1317 0.1317

Rank 3 1 2 Rank 3 1 1

(c) One Error (_) (d) Coverage (_)

Dataset MLkNN MLFLD MAXP Dataset MLkNN MLFLD MAXP

Emotions 0.2615 0.2234 0.2234 Emotions 1.7479 1.6745 1.6745

Image 0.3063 0.2652 0.2652 Image 0.8631 0.8023 0.8023

Scene 0.2244 0.2016 0.2016 Scene 0.4415 0.4125 0.4125

Yeast 0.2059 0.2104 0.2104 Yeast 6.1086 6.0793 6.0793

CAL500 0.0923 0.1025 0.1025 CAL500 113.2037 113.0725 113.0725

Average 0.2181 0.2006 0.2006 Average 24.4730 24.4082 24.4082

Rank 3 1 1 Rank 3 1 1

Also, different sample sizes are used during execution like 60, 70, 80, and 90. Sizes

60 and 70 are suitable for some datasets only. 80 and 90 are always viewed better on almost

all datasets. Results of size 80 are used for comparison further. Results are shown in Table

6.232 and 6.233.
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Table 6.233: Effect of feature and instance selection for proposed algorithms compared
with MLkNN

(e) Average Precision (^) (f) Accuracy (^)

Dataset MLkNN MLFLD MAXP Dataset MLkNN MLFLD MAXP

Emotions 0.8071 0.8322 0.8322 Emotions 0.5233 0.5649 0.5848

Image 0.8052 0.8298 0.8298 Image 0.5279 0.6016 0.6529

Scene 0.8699 0.8816 0.8816 Scene 0.6681 0.7118 0.7628

Yeast 0.7852 0.7860 0.7860 Yeast 0.5275 0.5352 0.5369

CAL500 0.5240 0.5249 0.5249 CAL500 0.2309 0.2344 0.2344

Average 0.7583 0.7709 0.7709 Average 0.4955 0.5296 0.5544

Rank 3 1 1 Rank 3 2 1

(g) Subset Accuracy (^) (h) Ex-F1 (^)

Dataset MLkNN MLFLD MAXP Dataset MLkNN MLFLD MAXP

Emotions 0.2721 0.3447 0.3511 Emotions 0.6049 0.6417 0.6662

Image 0.4475 0.5097 0.5560 Image 0.5552 0.6329 0.6859

Scene 0.6239 0.6661 0.7141 Scene 0.6831 0.7272 0.7793

Yeast 0.1961 0.2155 0.2155 Yeast 0.6297 0.6326 0.6351

CAL500 0.0000 0.0000 0.0000 CAL500 0.3680 0.3720 0.3720

Average 0.3079 0.3472 0.3673 Average 0.5682 0.6013 0.6277

Rank 3 2 1 Rank 3 2 1

(i) Macro-F1 (^) (j) Micro-F1 (^)

Dataset MLkNN MLFLD MAXP Dataset MLkNN MLFLD MAXP

Emotions 0.6183 0.6584 0.6665 Emotions 0.6571 0.6822 0.6894

Image 0.6042 0.6634 0.6781 Image 0.6066 0.6655 0.6789

Scene 0.7345 0.7659 0.7774 Scene 0.7346 0.7650 0.7731

Yeast 0.4212 0.4880 0.4887 Yeast 0.6580 0.6635 0.6637

CAL500 0.2583 NaN NaN CAL500 0.3709 0.3769 0.3769

Average 0.5273 0.6439 0.6527 Average 0.6054 0.6306 0.6364

Rank 3 2 1 Rank 3 2 1
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Table 6.234: Summary of comparison of feature and instance selection on proposed
algorithms

Metric MLFSIS+ MLkNN MLFSIS + MLFLD MLFSIS + MAXP

HamLoss 0.1547 0.1492 0.1499

RankLoss 0.1390 0.1317 0.1317

OneError 0.2181 0.2006 0.2006

Coverage 24.473 24.4082 24.4082

AvgPrec 0.7583 0.7709 0.7709

Accuracy 0.4955 0.5296 0.5544

SubAcc 0.3079 0.3472 0.3673

Ex-F1 0.5682 0.6013 0.6277

Macro F1 0.5273 0.6439 0.6527

Micro F1 0.6054 0.6306 0.6364

Avg Rank 3.0 1.5 1.1

#Wins 0 5 9

Observations: Again, MLFLD-MAXP achieved better avg rank 1.1 with 9 on 10

wins, whereas MLFLD stood second with avg rank 1.5 and 5 wins over MLkNN as shown

Table 6.234.

6.9.5 Comparison of feature and instance selection experiments for dif-

ferent sample sizes

Similar to instance selection, the performance of three algorithms are compared

for a feature and instance selection experiments for 60-100% instances. Again Figures (b)-

(e) show only two algorithms as both MLFLF-MAXP and MLFLD have the same behavior

for the corresponding metric. 90% of instances are examined to work better among 5 sizes,

followed by 80%. Both 90 and 80 performed better than size 100.
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Table 6.235: Comparison of feature and instance selection experiments for different
sample sizes
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When all the experiments in the last three sections are examined, it is noticed

that the micro-F1 metric is improved the most with feature selection. Subset accuracy and

accuracy are more improved by feature and instance selection experiments. Remaining all

measures are raised slightly.

6.10 Effect of k variation on proposed algorithm MLFLD

The number of neighbors, k, has always remained an essential point in k nearest

neighbors (kNN) classifier. But in the case of multi-label classifiers based on kNN, the

scenario is different. While doing the experimentation of MLFLD, k is varied from 5 to

15. The performance of four datasets is examined as shown in Table 6.236 to 6.239, that

is also shown graphically in Figure 6.24 to 6.27, respectively. Increased performance for a

metric is marked by bold value in each column. It can be seen that ”k” has less effect on

the performance of MLFLD. Performance metrics show very slightly or no variation with

that of k. From these observations and sources from the literature [20] [12] [37] [42] [89],

the value of k used for the remaining experimentation is 10.

6.10.1 Effect of k variation on MLFLD using Emotions dataset

Table 6.236 shows that out of 10, 6 parameters show improvement for a higher

value of k, and the remaining 4 parameters show an increase for a lower value of k. Hence to

keep a balance between all metrics, value 10 is marked better for parameter k, which shows

performance near to average. The same is depicted in Figure 6.24. Note that coverage

values are scaled between 0 to 1 range in the graph.
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Table 6.236: Effect of k variation on MLFLD using Emotions dataset

k

Ham

Loss

(_)

Rank

Loss

(_)

One

Error

(_)

Coverage

(_)

Avg.

Prec.

(^)

Accuracy

(^)

Subset

Accuracy

(^)

Ex-F1

(^)

Macro

F1

(^)

Micro

F1

(^)

5 0.1929 0.1590 0.2559 1.7678 0.8074 0.5666 0.3051 0.6524 0.6659 0.6843

6 0.1969 0.1596 0.2593 1.7763 0.8060 0.5564 0.3102 0.6392 0.6615 0.6767

7 0.1910 0.1598 0.2847 1.7610 0.7990 0.5638 0.3288 0.6407 0.6636 0.6823

8 0.1944 0.1602 0.2746 1.7780 0.7998 0.5582 0.3136 0.6371 0.6666 0.6773

9 0.1918 0.1557 0.2627 1.7492 0.8096 0.5613 0.3186 0.6418 0.6595 0.6796

10 0.1938 0.1483 0.2492 1.7102 0.8183 0.5483 0.3051 0.6274 0.6584 0.6727

11 0.1958 0.1474 0.2508 1.7153 0.8167 0.5444 0.3051 0.6235 0.6531 0.6685

12 0.1907 0.1512 0.2559 1.7339 0.8136 0.5561 0.3153 0.6357 0.6659 0.6815

13 0.1935 0.1455 0.2407 1.7068 0.8198 0.5558 0.3186 0.6338 0.6640 0.6771

14 0.1876 0.1474 0.2559 1.7000 0.8165 0.5602 0.3237 0.6379 0.6706 0.6838

15 0.1932 0.1457 0.2525 1.6898 0.8170 0.5499 0.3136 0.6269 0.6622 0.6740

Avg 0.1929 0.1527 0.2584 1.7353 0.8112 0.5565 0.3143 0.6360 0.6628 0.6780

Figure 6.24: Effect of k variation on MLFLD using Emotions dataset

6.10.2 Effect of k variation on MLFLD using Scene dataset

Table 6.237 shows that nine metrics show enhancement for a k value 13, and

Macro-F1 shows growth for k 11 that is very close to performance for k 13. But working

for a k value 10 and 13 is seen similar, which is very close to the average performance. The

same is depicted in Figure 6.25.
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Table 6.237: Effect of k variation on MLFLD using Scene dataset

k

Ham

Loss

(_)

Rank

Loss

(_)

One

Error

(_)

Coverage

(_)

Avg.

Prec.

(^)

Accuracy

(^)

Subset

Accuracy

(^)

Ex-F1

(^)

Macro

F1

(^)

Micro

F1

(^)

5 0.0837 0.0734 0.2138 0.4525 0.8733 0.6935 0.6538 0.7069 0.7534 0.7473

6 0.0809 0.0740 0.2096 0.4563 0.8742 0.6967 0.6583 0.7096 0.7591 0.7531

7 0.0804 0.0715 0.2071 0.4450 0.8762 0.7008 0.6600 0.7144 0.7611 0.7561

8 0.0793 0.0697 0.2017 0.4354 0.8792 0.7065 0.6637 0.7208 0.7674 0.7609

9 0.0785 0.0693 0.2050 0.4333 0.8777 0.7021 0.6608 0.7159 0.7654 0.7610

10 0.0797 0.0682 0.2050 0.4258 0.8785 0.7083 0.6629 0.7235 0.7683 0.7617

11 0.0785 0.0676 0.2029 0.4217 0.8805 0.7149 0.6713 0.7296 0.7736 0.7656

12 0.0795 0.0674 0.2046 0.4208 0.8800 0.7076 0.6625 0.7228 0.7679 0.7613

13 0.0783 0.0646 0.1987 0.4058 0.8836 0.7176 0.6725 0.7327 0.7732 0.7663

14 0.0789 0.0650 0.1987 0.4108 0.8827 0.7151 0.6679 0.7309 0.7704 0.7652

15 0.0797 0.0661 0.2050 0.4162 0.8799 0.7119 0.6629 0.7283 0.7680 0.7621

Avg 0.0798 0.0688 0.2047 0.4294 0.8787 0.7068 0.6633 0.7214 0.7662 0.7601

Figure 6.25: Effect of k variation on MLFLD using Scene dataset

6.10.3 Effect of k variation on MLFLD using an Image dataset

Table 6.238 shows that seven metrics have shown improvement for a k value above

ten, and the remaining three metrics for a k value below 10. Hence k value ten is viewed

better to keep the balance between performances of parameters. The same is depicted in

Figure 6.26.
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Table 6.238: Effect of k variation on MLFLD using Image dataset

k

Ham

Loss

(_)

Rank

Loss

(_)

One

Error

(_)

Coverage

(_)

Avg.

Prec.

(^)

Accuracy

(^)

Subset

Accuracy

(^)

Ex-F1

(^)

Macro

F1

(^)

Micro

F1

(^)

5 0.1667 0.1724 0.2996 0.9580 0.8018 0.5338 0.4467 0.5636 0.6113 0.6093

6 0.1605 0.1655 0.2911 0.9345 0.8069 0.5524 0.4577 0.5848 0.6265 0.6249

7 0.1622 0.1629 0.2861 0.9255 0.8091 0.5599 0.4587 0.5947 0.6312 0.6294

8 0.1619 0.1598 0.2876 0.9095 0.8106 0.5692 0.4702 0.6031 0.6347 0.6329

9 0.1624 0.1588 0.2871 0.9089 0.8110 0.5410 0.4497 0.5722 0.6180 0.6165

10 0.1631 0.1570 0.2916 0.8964 0.8105 0.5588 0.4632 0.5916 0.6287 0.6259

11 0.1594 0.1538 0.2831 0.8884 0.8146 0.5547 0.4572 0.5878 0.6285 0.6281

12 0.1608 0.1542 0.2846 0.8854 0.8148 0.5626 0.4612 0.5971 0.6333 0.6314

13 0.1614 0.1555 0.2896 0.8944 0.8112 0.5582 0.4572 0.5928 0.6291 0.6293

14 0.1602 0.1569 0.2846 0.9009 0.8124 0.5647 0.4577 0.6010 0.6376 0.6349

15 0.1622 0.1549 0.2846 0.8914 0.8134 0.5575 0.4497 0.5943 0.6309 0.6294

Avg 0.1619 0.1592 0.2881 0.9085 0.8106 0.5557 0.4572 0.5894 0.6282 0.6265

Figure 6.26: Effect of k variation on MLFLD using Image dataset

6.10.4 Effect of k variation on MLFLD using Yeast dataset

Table 6.239 shows that 5 metrics show growth for a k value above 10, and the

remaining 5 parameters show improvement for a k value below 10. Hence k value 10 is

marked better to keep a balance between performances of metrics that also appeared very

close to average overall the k values. The same is depicted in Figure 6.27.
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Table 6.239: Effect of k variation on MLFLD using Yeast dataset

k

Ham

Loss

(_)

Rank

Loss

(_)

One

Error

(_)

Coverage

(_)

Avg.

Prec.

(^)

Accuracy

(^)

Subset

Accuracy

(^)

Ex-F1

(^)

Macro

F1

(^)

Micro

F1

(^)

5 0.2015 0.1714 0.2494 6.2651 0.7612 0.5180 0.2124 0.6152 NaN 0.6442

6 0.1971 0.1723 0.2461 6.3133 0.7608 0.5073 0.1963 0.6064 NaN 0.6395

7 0.1991 0.1719 0.2390 6.3071 0.7619 0.5197 0.2104 0.6190 NaN 0.6467

8 0.2011 0.1708 0.2444 6.3037 0.7623 0.5070 0.2004 0.6055 NaN 0.6366

9 0.2004 0.1688 0.2303 6.2884 0.7660 0.5118 0.2012 0.6121 NaN 0.6410

10 0.1981 0.1689 0.2378 6.2905 0.7648 0.5116 0.2046 0.6109 NaN 0.6426

11 0.1983 0.1684 0.2361 6.2689 0.7643 0.5192 0.2100 0.6178 NaN 0.6477

12 0.1990 0.1679 0.2357 6.2544 0.7659 0.5081 0.2066 0.6059 NaN 0.6393

13 0.2004 0.1679 0.2361 6.2627 0.7657 0.5089 0.1979 0.6090 NaN 0.6399

14 0.1985 0.1683 0.2394 6.2419 0.7656 0.5190 0.2029 0.6197 NaN 0.6470

15 0.1977 0.1682 0.2398 6.2631 0.7647 0.5235 0.2075 0.6241 NaN 0.6507

Avg 0.1992 0.1695 0.2395 6.2781 0.7639 0.5140 0.2046 0.6132 NaN 0.6432

Figure 6.27: Effect of k variation on MLFLD using Yeast dataset

6.11 Effect of threshold variation on proposed algorithm MLFLD

A threshold is a significant parameter in the MLFLD algorithm. Whenever labels

are to be predicted for an unseen instance, then a probability is calculated for each label. If

it is above threshold t for a particular label c, then that label c is said to be associated with

instance under consideration. The performance of four datasets is examined, as shown in

Table 6.240 to 6.243. The threshold is varied from 0.3 to 0.7. As threshold value is increased,

evaluation metrics, namely ranking loss, one error, coverage, and average precision, show

stable performance. These metrics are not included in Figures 6.28 to 6.31. The remaining

metrics show varying performance.
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6.11.1 Effect of threshold variation on Emotions dataset

For the Emotions dataset, threshold 0.5 has shown minimum hamming loss and

performance better than the average value for the last 5 metrics. Threshold 0.3 has shown

better accuracy and harmonic means but results in a more hamming loss. Threshold values

near 0.7 have not performed well.

Table 6.240: Effect of threshold variation on MLFLD using Emotions dataset

k

Ham

Loss

(_)

Rank

Loss

(_)

One

Error

(_)

Coverage

(_)

Avg.

Prec.

(^)

Accuracy

(^)

Subset

Accuracy

(^)

Ex-F1

(^)

Macro

F1

(^)

Micro

F1

(^)

0.3 0.2093 0.1483 0.2492 1.7102 0.8183 0.5877 0.2932 0.6818 0.6906 0.6992

0.35 0.2054 0.1483 0.2492 1.7102 0.8183 0.5813 0.3017 0.6719 0.6803 0.6924

0.4 0.2025 0.1483 0.2492 1.7102 0.8183 0.5770 0.3220 0.6621 0.6754 0.6880

0.45 0.1941 0.1483 0.2492 1.7102 0.8183 0.5645 0.3220 0.6446 0.6648 0.6807

0.5 0.1938 0.1483 0.2492 1.7102 0.8183 0.5483 0.3051 0.6274 0.6584 0.6727

0.55 0.1977 0.1483 0.2492 1.7102 0.8183 0.5304 0.2932 0.6081 0.6439 0.6591

0.6 0.1983 0.1483 0.2492 1.7102 0.8183 0.5090 0.2746 0.5866 0.6304 0.6457

0.65 0.2051 0.1483 0.2492 1.7102 0.8183 0.4679 0.2542 0.5379 0.5948 0.6101

0.7 0.2065 0.1483 0.2492 1.7102 0.8183 0.4340 0.2271 0.5018 0.5579 0.5840

Avg 0.2014 0.1483 0.2492 1.7102 0.8183 0.5333 0.2881 0.6136 0.6441 0.6591

Figure 6.28: Effect of threshold variation on MLFLD using Emotions dataset

6.11.2 Effect of threshold variation on Scene dataset

For the Scene dataset, both 0.45 and 0.5 thresholds (Th) have shown minimum

hamming loss. But Th 0.3 and 0.35 have shown better accuracy and Ex-F1 at the cost
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of increased hamming loss. 0.45 is the best choice for threshold in the case of the Scene

dataset. A 0.5 value is used throughout experimentation. Its performance is very similar

to that at 0.45 as well as better than average across all thresholds.

Table 6.241: Effect of threshold variation on MLFLD using Scene dataset

k

Ham

Loss

(_)

Rank

Loss

(_)

One

Error

(_)

Coverage

(_)

Avg.

Prec.

(^)

Accuracy

(^)

Subset

Accuracy

(^)

Ex-F1

(^)

Macro

F1

(^)

Micro

F1

(^)

0.3 0.0893 0.0682 0.2050 0.4258 0.8785 0.7402 0.6338 0.7762 0.7755 0.7642

0.35 0.0849 0.0682 0.2050 0.4258 0.8785 0.7407 0.6529 0.7702 0.7794 0.7686

0.4 0.0816 0.0682 0.2050 0.4258 0.8785 0.7326 0.6704 0.7534 0.7758 0.7673

0.45 0.0797 0.0682 0.2050 0.4258 0.8785 0.7243 0.6750 0.7408 0.7732 0.7662

0.5 0.0797 0.0682 0.2050 0.4258 0.8785 0.7083 0.6629 0.7235 0.7683 0.7617

0.55 0.0804 0.0682 0.2050 0.4258 0.8785 0.6872 0.6479 0.7004 0.7576 0.7526

0.6 0.0808 0.0682 0.2050 0.4258 0.8785 0.6633 0.6304 0.6744 0.7456 0.7428

0.65 0.0804 0.0682 0.2050 0.4258 0.8785 0.6522 0.6217 0.6624 0.7422 0.7397

0.7 0.0826 0.0682 0.2050 0.4258 0.8785 0.6297 0.6025 0.6388 0.7283 0.7269

Avg 0.0822 0.0682 0.2050 0.4258 0.8785 0.6976 0.6442 0.7156 0.7607 0.7544

Figure 6.29: Effect of threshold variation on MLFLD using Scene dataset

6.11.3 Effect of threshold variation on an Image dataset

For Image dataset, threshold (Th) 0.45 and 0.55 have shown better subset accuracy

and least hamming loss, respectively. Th 0.3 has shown better accuracy and all F1 measures.

Performance at Th 0.5 is seen well than average overall thresholds.
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Table 6.242: Effect of threshold variation on MLFLD using Image dataset

k

Ham

Loss

(_)

Rank

Loss

(_)

One

Error

(_)

Coverage

(_)

Avg.

Prec.

(^)

Accuracy

(^)

Subset

Accuracy

(^)

Ex-F1

(^)

Macro

F1

(^)

Micro

F1

(^)

0.3 0.1859 0.1570 0.2916 0.8964 0.8105 0.6008 0.4142 0.6664 0.6565 0.6531

0.35 0.1804 0.1570 0.2916 0.8964 0.8105 0.6007 0.4337 0.6595 0.6554 0.6518

0.4 0.1670 0.1570 0.2916 0.8964 0.8105 0.5959 0.4697 0.6398 0.6527 0.6498

0.45 0.1625 0.1570 0.2916 0.8964 0.8105 0.5869 0.4747 0.6255 0.6468 0.6442

0.5 0.1631 0.1570 0.2916 0.8964 0.8105 0.5588 0.4632 0.5916 0.6287 0.6259

0.55 0.1624 0.1570 0.2916 0.8964 0.8105 0.5294 0.4447 0.5582 0.6089 0.6071

0.6 0.1639 0.1570 0.2916 0.8964 0.8105 0.5043 0.4267 0.5307 0.5909 0.5909

0.65 0.1652 0.1570 0.2916 0.8964 0.8105 0.4672 0.3997 0.4900 0.5656 0.5671

0.7 0.1698 0.1570 0.2916 0.8964 0.8105 0.4172 0.3577 0.4373 0.5296 0.5313

Avg 0.1689 0.1570 0.2916 0.8964 0.8105 0.5401 0.4316 0.5777 0.6150 0.6135

Figure 6.30: Effect of threshold variation on MLFLD using Image dataset

6.11.4 Effect of threshold variation on Yeast dataset

For the Yeast dataset, a minimum hamming loss is obtained for threshold 0.5;

however, better accuracy and ex-F1 is noticed for thresholds 0.3 to 0.4. MLFLD is not able

to compute Macro-F1 for Yeast shown by NaN.
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Table 6.243: Effect of threshold variation on MLFLD using Yeast dataset

k

Ham

Loss

(_)

Rank

Loss

(_)

One

Error

(_)

Coverage

(_)

Avg.

Prec.

(^)

Accuracy

(^)

Subset

Accuracy

(^)

Ex-F1

(^)

Macro

F1

(^)

Micro

F1

(^)

0.3 0.2225 0.1689 0.2378 6.2905 0.7648 0.5490 0.1813 0.6578 NaN 0.6679

0.35 0.2115 0.1689 0.2378 6.2905 0.7648 0.5513 0.1979 0.6566 NaN 0.6698

0.4 0.2038 0.1689 0.2378 6.2905 0.7648 0.5484 0.2116 0.6505 NaN 0.6680

0.45 0.1996 0.1689 0.2378 6.2905 0.7648 0.5341 0.2112 0.6352 NaN 0.6587

0.5 0.1981 0.1689 0.2378 6.2905 0.7648 0.5116 0.2046 0.6109 NaN 0.6426

0.55 0.2017 0.1689 0.2378 6.2905 0.7648 0.4797 0.1942 0.5753 NaN 0.6162

0.6 0.2018 0.1689 0.2378 6.2905 0.7648 0.4614 0.1855 0.5543 NaN 0.6033

0.65 0.2064 0.1689 0.2378 6.2905 0.7648 0.4258 0.1627 0.5162 NaN 0.5728

0.7 0.2133 0.1689 0.2378 6.2905 0.7648 0.3830 0.1407 0.4681 NaN 0.5357

Avg 0.2065 0.1689 0.2378 6.2905 0.7648 0.4938 0.1877 0.5917 NaN 0.6261

Figure 6.31: Effect of threshold variation on MLFLD using Yeast dataset

The threshold is varied from 0.3 to 0.7, and the performance of each dataset is

seen. It is noticed that if you try to minimize hamming loss, then you have to compromise

on some other performance measures like accuracy, ex-F1, macro, and micro F1. That

is, it is not possible to optimize hamming loss, accuracy, and F measure simultaneously.

This work has focused on minimizing the hamming loss metric. Also, it can be seen that

hamming loss at threshold 0.5 is near to optimum value among all threshold values except

for the Image dataset. From these observations and sources from the literature [20] [12]

[37] [42] [89], the threshold value used throughout the remaining experimentation is 0.5.
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6.12 Effect of Smoothing parameter variation on proposed

algorithms

Like k variation, the performance of MLFLD is monitored for smoothing param-

eter variation. It takes values 0.25, 0.5, 0.75 and 1. Four datasets used for k variation

are used for experimentation. Tables 6.244 to 6.247 show the performance of MLFLD for

the same. It is noted that measures like hamming loss, accuracy, F measure do not affect.

But the ranking loss, one error, coverage, and average precision show the minimal effect of

smoothing factor variation.

6.12.1 Effect of smoothing parameter variation using Emotions dataset

For Emotions, rank loss, coverage, and avg precision, have a favorable impact of

the smoothing factor increase. But an adverse effect is seen on one error, as shown in Table

6.244.

Table 6.244: Effect of Smoothing parameter variation on MLFLD using Emotions dataset

k

Ham

Loss

(_)

Rank

Loss

(_)

One

Error

(_)

Coverage

(_)

Avg.

Prec.

(^)

Accuracy

(^)

Subset

Accuracy

(^)

Ex-F1

(^)

Macro

F1

(^)

Micro

F1

(^)

0.25 0.1938 0.1499 0.2475 1.7220 0.8170 0.5483 0.3051 0.6274 0.6584 0.6727

0.5 0.1938 0.1496 0.2492 1.7169 0.8173 0.5483 0.3051 0.6274 0.6584 0.6727

0.75 0.1938 0.1490 0.2492 1.7136 0.8178 0.5483 0.3051 0.6274 0.6584 0.6727

1.0 0.1938 0.1483 0.2492 1.7102 0.8183 0.5483 0.3051 0.6274 0.6584 0.6727

6.12.2 Effect of smoothing parameter variation using Scene dataset

Only for Scene dataset, all metrics are showing slight adverse effect. Ranking loss,

one error and coverage are showing slight increase whereas avg precision is showing a slight

decrease with increasing smoothing factor.
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Table 6.245: Effect of Smoothing parameter variation on MLFLD using Scene dataset

k

Ham

Loss

(_)

Rank

Loss

(_)

One

Error

(_)

Coverage

(_)

Avg.

Prec.

(^)

Accuracy

(^)

Subset

Accuracy

(^)

Ex-F1

(^)

Macro

F1

(^)

Micro

F1

(^)

0.25 0.0797 0.0681 0.2042 0.4250 0.8791 0.7083 0.6629 0.7235 0.7683 0.7617

0.5 0.0797 0.0680 0.2037 0.4242 0.8793 0.7083 0.6629 0.7235 0.7683 0.7617

0.75 0.0797 0.0680 0.2042 0.4242 0.8792 0.7083 0.6629 0.7235 0.7683 0.7617

1.0 0.0797 0.0682 0.2050 0.4258 0.8785 0.7083 0.6629 0.7235 0.7683 0.7617

6.12.3 Effect of smoothing parameter variation using Image dataset

For all values, no change in metric values is observed for Image as shown in Table

6.246.

Table 6.246: Effect of Smoothing parameter variation on MLFLD using Image dataset

k

Ham

Loss

(_)

Rank

Loss

(_)

One

Error

(_)

Coverage

(_)

Avg.

Prec.

(^)

Accuracy

(^)

Subset

Accuracy

(^)

Ex-F1

(^)

Macro

F1

(^)

Micro

F1

(^)

0.25 0.1631 0.1570 0.2916 0.8964 0.8105 0.5588 0.4632 0.5916 0.6287 0.6259

0.5 0.1631 0.1570 0.2916 0.8964 0.8105 0.5588 0.4632 0.5916 0.6287 0.6259

0.75 0.1631 0.1570 0.2916 0.8964 0.8105 0.5588 0.4632 0.5916 0.6287 0.6259

1.0 0.1631 0.1570 0.2916 0.8964 0.8105 0.5588 0.4632 0.5916 0.6287 0.6259

6.12.4 Effect of smoothing parameter variation using Yeast dataset

For Yeast, rank loss, one error, coverage and avg precision, have the favorable

impact of smoothing factor increase, as shown in Table 6.247.

Table 6.247: Effect of Smoothing parameter variation on MLFLD using Yeast dataset

k

Ham

Loss

(_)

Rank

Loss

(_)

One

Error

(_)

Coverage

(_)

Avg.

Prec.

(^)

Accuracy

(^)

Subset

Accuracy

(^)

Ex-F1

(^)

Macro

F1

(^)

Micro

F1

(^)

0.25 0.1981 0.1697 0.2394 6.3025 0.7639 0.5116 0.2046 0.6109 NaN 0.6426

0.5 0.1981 0.1693 0.2390 6.2992 0.7643 0.5116 0.2046 0.6109 NaN 0.6426

0.75 0.1981 0.1690 0.2386 6.2925 0.7647 0.5116 0.2046 0.6109 NaN 0.6426

1.0 0.1981 0.1689 0.2378 6.2905 0.7648 0.5116 0.2046 0.6109 NaN 0.6426

The performance of 4 datasets is shown in Table 6.244 to 6.247. It is noticed that

variation in the smoothing factor has less effect on the performance of MLFLD. From these
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observations and sources from the literature [20] [12] [37] [42] [89], the smoothing factor is

set to 1 for the remaining experimentation.

To summarize, the selection of the most appropriate neighbors is crucial for any

kNN based algorithm. Computation of feature similarity has been commonly used in exist-

ing kNN based approaches, including MLkNN. In the case of multi-label data, an instance

is associated with multiple labels. Two multi-label algorithms are proposed in this work.

The first algorithm called Multi-Label Classification, using Feature similarity and Label

Dissimilarity (MLFLD). The second algorithm proposed in this work is called MLFLD

with MAXimum Probability (MLFLD-MAXP). Both algorithms utilize important implicit

information embedded in features as well as labels in order to identify the most appropriate

neighbors for a given test instance. Evaluation of both the algorithms was carried out using

cross-validation as well as train-test sets. For cross-validation, ten folds were used on five

benchmark datasets. For train-test splits, thirteen benchmark datasets were used for which

splits are available from their sources. The performance is measured for eight example-

based metrics, namely hamming loss, ranking loss, one error, coverage, average precision,

accuracy, subset accuracy, example-based F1, and two label-based metrics, namely, the

macro-F1 and micro-F1. It is observed that not all the parameters can be improved si-

multaneously. MLFLD and MLFLD-MAXP dominate the state-of-the-art algorithms used

for comparison for the subset accuracy and demonstrate their effectiveness. For searching

nearest neighbors, both algorithms use features along with labels of instances, as observed

in the dataset. It helps to increase the correct prediction of the label set, causing growth

in subset accuracy.
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Chapter 7

Conclusion and Future Scope

Lots of data in the real world inherently is multi-label data. Thus, multi-label clas-

sification has gained significant importance and application in the recent past and thereby

attracted researchers too. Existing methods for multi-label classification belong to two

approaches: one that reorganizes data called problem transformation approach. It needs

higher computation time and also relatively less accurate as it loses important implicit

information due to data reorganization. Another time-efficient method uses data directly

without any data reorganization. It is referred to as an algorithm adaptation approach. It is

found to be superior w. r. t. to classifier performance when compared to the transformation

approach.

This work proposes a novel multi-label classification algorithm MLFLD that fol-

lows the algorithm-adaptation approach. It considers label dissimilarity along with feature

similarity to enhance classifier performance. The work also proposes MLFLD-MAXP, an

extension of MLFLD.

Concluding remarks based on the work carried out are provided in this section.

The notable research finding is summarized and provides directions for further research.
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7.1 Multi-label classification using MLFLD and MLFLD-MAXP

algorithms

Many researchers have designed the lazy (kNN) multi-label classification meth-

ods that follow the algorithm adaptation approach. Such classifiers identify appropriate

neighbors of the given test instance and classify the test instance. MLkNN is one such ex-

isting algorithm and appears currently to be the best algorithm that follows the algorithm

adaptation approach.

The selection of the most appropriate neighbors is crucial for any kNN based

algorithm. Computation of feature similarity has been commonly used in existing kNN

based approaches, including MLkNN. In the case of multi-label data, as the instance is

associated with multiple labels, a new method may be devised for further performance

enhancements by considering label dissimilarity in addition to feature similarity.

Two multi-label algorithms are devised in this work. The first algorithm called

Multi-Label Classification, using Feature similarities and Label Dissimilarities (MLFLD).

The second algorithm proposed in this work is called MLFLD with MAXimum Probability

(MLFLD-MAXP). Both algorithms utilize important implicit information embedded in

features as well as labels in order to identify the most appropriate neighbors for a given

test instance.

Evaluation of both the algorithms is carried out using cross-validation as well as

train-test sets. For cross-validation, ten folds are used on five benchmark datasets. For

train-test splits, thirteen benchmark datasets are used for which splits are available from

their sources. The performance is measured for eight example-based metrics, namely ham-

ming loss, ranking loss, one error, coverage, average precision, accuracy, subset accuracy,

example-based F1, and two label-based metrics, namely, the macro-F1 and micro-F1. It is

observed that not all the parameters are used generally in the reported literature. Many

of the researchers use only the first five parameters, while others either use only hamming

loss, accuracy, ex-F1, or only macro and micro F1. This work has used all the ten param-

eters for the evaluation of the performance of proposed algorithms. Like other domains,

the performance parameters conflict with each other, and thus it is not possible for any

algorithm to optimize each of these parameters.
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While a lower value is desired for one error, coverage, hamming and ranking loss, a

higher value is desired in case of the remaining six metrics. Hence the metrics average rank

and number of wins are used for analyzing the performances of algorithms. The algorithm

that provides the lowest average rank and the maximum number of wins indicates the best

algorithm.

Several experiments are carried out using in all seven existing transformation-

based and algorithm adaptation-based algorithms, including the best known ML-kNN al-

gorithm. A summary of important observations is provided in the following sections.

Comparative analysis shows that the performance of both MLFLD and MLFLD-

MAXP is identical w. r. t. one error, coverage, average precision, and rank loss.

7.1.1 Evaluation using Cross-Validation

Algorithm MLFLD has outperformed all the seven competing algorithms. It pro-

vides the smallest average rank of 1 and 10 on 10 wins. In fact, it has outshined w. r. t.

subset accuracy for all datasets with overall 8% improvements as well as 5% improvements

for accuracy when compared with MLkNN. Also, an average increase of 5%, 4%, and 3% is

observed in the case of ex-F1, micro, and macro F1, respectively. The average improvement

in one error and rank loss is 4%, each with a 1% improvement in hamming loss and average

precision each. Value for coverage by algorithm MLFLD is observed to be the same as that

of MLkNN while it is better than the remaining methods.

MLFLD-MAXP, as like MLFLD, outperforms all other competing algorithms with

average rank of 1 and 10 wins out of 10. MLFLD-MAXP shows further improvements in

subset accuracy by 15% and 10% for accuracy as compared to MLkNN. Ex-F1, macro, and

micro F1 are improved by 9%, 7%, and 4% respectively while one error and rank loss are

enhanced by 3%. A gain of 1% and 0.1% is observed in average precision and coverage,

respectively. Thus performance improvement shown by MLFLD-MAXP is almost twice that

of MLFLD for accuracy, subset accuracy, ex-F1, and 1% higher for label-based measures.

Misclassification, in the case of MLFLD, is 0.5% lower than MLFLD-MAXP, and

thus it provides better hamming loss. It is obvious because of intentionally assigning at least

one label to each instance whenever no label is predicted in the case of MLFLD-MAXP.
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Thus at the cost of a slight degradation in hamming loss, MLFLD-MAXP provides the

percentage improvement for subset accuracy, accuracy, and ex-F1.

When both the algorithms are compared with MLkNN, MLFLD-MAXP outper-

forms ML-kNN as well as MLFLD with the smallest avg. rank of 1.1 and 9 wins. MLFLD

provides an average rank of 1.5 and 5 wins while MLkNN provides a rank of 3.1 and no

wins.

7.1.2 Evaluation using Train-Test

Experimentation using thirteen benchmark datasets show that the algorithm MLFLD-

MAXP provides superior performance with the smallest average rank of 1.8 over 10 mea-

sures. MLkNN provides an average rank of 3.1 that is much higher than that of MLFLD-

MAXP. The average rank of MLFLD is twice that of MLFLD-MAXP.

Algorithm MLFLD-MAXP provides the rank of 1 for the subset accuracy with

11% and 35% improvements over algorithms CC and MLkNN, respectively. It outperforms

algorithm ML-kNN w.r.t. accuracy as well as algorithm CC w.r.t. ex-F1 by 30% and 1-3%.

Both MLFLD and MLFLD-MAXP algorithms have lesser misclassifications than others

except MLkNN and defeat all other algorithms except MLkNN w.r.t. one error, ranking

loss, average precision and coverage. It should be noted that all nearest neighbor-based

algorithms, namely, BRkNN, MLkNN, and MLFLD, do not perform well on accuracy and

F measure based metrics in these experiments.

7.2 Effect of Distance Metrics

7.2.1 Effect of distance metrics on the computation of feature similarity

Though the proposed algorithms perform well using Euclidean distance, it is in-

teresting to see the effect of distance metrics on multi-label classification. Three distance

metrics, namely Euclidean, Manhattan, and Minkowski, are used for computing feature

similarity and to evaluate the algorithms. Some of the observations are:

� MLFLD-MAXP with particular distance measure is better than MLFLD for all per-

formance parameters except hamming loss.
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� In the case of experiments using cross-validation with five benchmark datasets, MLFLD-

MAXP with Manhattan outperforms all other algorithms at the cost of computation

time that is almost three times higher than that of MLkNN.

� For train-test experiments with thirteen benchmark datasets, it was noted that MLFLD-

MAXP using Euclidean defeats MLkNN for average rank. Performance improvement

for subset accuracy is 30%, while for accuracy and ex-F1, it is 30% and 7-10% for

label-based measures.

7.2.2 Effect of distance metrics for large datasets

When two large datasets are used for experiments with distance metrics, the

time required with Manhattan is double while it is more than double for Euclidean and

Minkowski experiments compared to that of MLkNN, respectively. The use of the Manhat-

tan distance measure has enhanced the performance of MLFLD more than MLFLD-MAXP.

Both have exceeded MLkNN.

7.2.3 Effect of distance metrics on the computation of label dissimilarity

Throughout the experimentations, the main focus is to examine how the use of

label dissimilarity measure affects the performance of MLFLD and MLFLD-MAXP. Ini-

tially, only Hamming distance is used for label dissimilarity, and three feature similarity

measures are tested. Later Jaccard and SimIC distance measures are also used for label

dissimilarity. Overall 18 variants obtained from of 2 proposed algorithms, 3 measures for

feature similarity and label dissimilarity each, are compared with MLkNN. It is observed

that

� Pattern noted for one error, coverage, average precision and rank loss is the same for

Hamming, Jaccard and SimIC. The performance of MLFLD variants seems the same

as that of corresponding MLFLD-MAXP variants.

� With cross-validation on five datasets, MLFLD-MAXP, Jaccard, Manhattan triplet

tops among 19 experiments. All variants of proposed algorithms defeat MLkNN in

average rank. For MLFLD-MAXP, experiments with Hamming and Jaccard distance
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measures seem to behave similarly, and both are viewed to be better than SimIC

variants.

� In train-test experiments with thirteen datasets, MLFLD-MAXP, Hamming, Eu-

clidean triplet tops among 19 experiments. MLFLD-MAXP and Hamming distance

with Euclidean, Manhattan, Minkowski distances exceed MLkNN in average rank.

The remaining variants could not defeat MLkNN.

7.3 Effect of Outliers

As outliers affect the predictive performance of a classifier, experimentation is

performed on datasets with and without outlier removal, and performance is analyzed for

cross-validation as well as train-test splits. Some observations are:

� When the performance of proposed algorithms without outlier removal is compared

with only MLkNN, the proposed algorithms behave identically w.r.t. hamming and

ranking losses, coverage, one error, and average precision, whereas MLFLD-MAXP

provides better improvements compared to MLFLD for the remaining five metrics.

� The performance of the proposed algorithms after removing outliers from datasets is

found to be better than all competing algorithms. MLFLD-MAXP provides better

improvements compared to MLFLD. Although MLFLD is always better for a ham-

ming loss when compared with MLFLD-MAXP, the performance of MLFLD-MAXP

is found to be better after outlier removal.

� For cross-validation experiments using five datasets, both proposed algorithms have

shown the same performance for one error, ranking loss, coverage, and average preci-

sion with 37, 33, 10, and 2 percent improvement over MLkNN, respectively. Maximum

growth is seen for subset accuracy, which is 46% and 35%, whereas 32% and 24% for

accuracy with MLFLD-MAXP and MLFLD, respectively. The execution time of all

experiments is comparable.

� For train-test experiments, MLFLD has improved hamming loss by 18% than MLFLD-

MAXP by 14% compared to MLkNN. Proposed algorithms perform equally well for

ranking loss, one error, coverage, and average precision with 20, 16, 8, and 7 % im-

provement than MLkNN, respectively. More improvement is seen in subset accuracy
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and example-based accuracy by MLFLD-MAXP as 81% and 73% than 34% and 29%

improvement of MLFLD, respectively. MLFLD-MAXP has outperformed with all

datasets for ex-F1 and 11 datasets for micro-F1 by 70% and 47% respectively for the

same. MLFLD results in 27% and 23% growth respectively. The time required by

the proposed algorithms is almost twice than of MLkNN due to label dissimilarity

computation.

7.4 Effect of Data Preprocessing

The use of feature and instance selection is a common practice in the case of

single-label classifiers and often provides higher classification performance. The effect of

using such pre-processing techniques on the proposed multi-label classifier algorithm is

summarized below.

7.4.1 Effect of feature selection

When proposed algorithms are evaluated with and without feature selection,

MLFLD-MAXP shows a slight improvement. Feature selection has little effect on the

overall performance of both the algorithms. MLFLD-MAXP provides improvements in

seven metrics. Enhancement in subset accuracy, coverage and macro-F1 is only 0.61%,

0.18% and 0.09% respectively.

Proposed algorithms when compared with other existing algorithms, it is observed

that MLFLD-MAXP stands first with an average rank of 1.3 and 8 wins, whereas MLFLD

stands second with an average rank of 1.6 and 4 wins. MLFLD-MAXP performs slightly

better than MLFLD for the two accuracy measures and the three F-measures. Both the

algorithms outperform MLkNN and other contestant algorithms. The performance of the

proposed algorithms is identical w. r. t. one error, coverage, ranking loss, and average

precision. The performance of MLFLD and MLkNN is identical w.r.t. average hamming

loss.
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7.4.2 Effect of instance selection

The performance of MLFLD, MLFLD-MAXP, and MLkNN is compared using

sampling with replacement with sample sizes of 60 to 100 percent. Both MLFLD and

MLFLD-MAXP exhibit identical performance. Moreover, these algorithms provide better

results for sample sizes of 80%, and 90% and a size of 90% offer superior performance.

Steady improvement is observed in the performances of the proposed algorithms

when the sample size is varied between 60% and 90%. The sample size of 60% is not

helpful for performance enhancements; however, it is still better than that of contesting

algorithms. MLFLD-MAXP with a sample size of 90% outshines with the smallest average

rank of 1.8, and 7 wins. It is followed by MLFLD with an average rank of 2.2 and 6 wins.

Both algorithms defeat MLkNN w.r.t. all performance parameters, except for the coverage

in case of MLFLD.

Better progress in the performance of MLFLD-MAXP w.r.t. accuracy, subset

accuracy, and ex-F1 is observed compared to MLFLD after instance selection. Performance

growth for both algorithms w.r.t. one error, coverage, average precision, and ranking loss

is identical.

7.4.3 Effect of feature and instance selection

The use of the feature and instance selection is found to be very useful in upgrading

the performance of proposed algorithms as compared to using the only feature or instance

selection. When the performance of MLFLD and MLFLD-MAXP is examined using both

feature and instance selection, MLFLD-MAXP outperforms MLFLD.

Performance comparison of proposed algorithms with MLkNN using both feature

and instance selection shows that MLFLD-MAXP provides the best performance with an

average rank of 1.1 and 9 wins, whereas MLFLD stands at second position with the average

rank of 1.5 and 5 wins and MLkNN stands at third position. Significant gain in performance

is noticed w.r.t. subset accuracy and accuracy with feature and instance selection.
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7.5 Effect of Model Input Parameters

Classifier models (either eager or lazy) are built using specific input parameters.

The values used for building the model decide classifier performance. In the case of lazy

learners like the kNN classifiers, parameters such as k many times, determine the perfor-

mance in the case of single-label classifiers. The following sections throw light on the effect

of such input parameters on multi-label classification, and are briefly outlined below.

7.5.1 Effect of k variation

The number of neighbors, k, is a crucial parameter for the k nearest neighbors

(kNN) classifiers. But in the case of multi-label classifiers based on kNN, the scenario is

different. While doing the experimentation of MLFLD, k is varied from 5 to 15. It is

noted that “k” has little effect on the performance of MLFLD. From these observations

and sources from the literature, the value of 10 for k is used in the experimentation.

7.5.2 Effect of threshold variation

The threshold is varied from 0.3 to 0.7, and the performance of the proposed

algorithm MLFLD is monitored. It is noticed that if one attempts to minimize hamming

loss, then one has to compromise some other performance measures such as accuracy, ex-

F1, macro, and micro F1. Thus, it is not possible to optimize hamming loss, accuracy,

and F measure simultaneously. Also, it is observed that hamming loss at the threshold

value of 0.5 is near to its optimum value in the case of most of the datasets. From these

observations, as well as from sources in the literature, the threshold value of 0.5 is used

throughout the remaining experimentation.

7.5.3 Effect of the smoothing parameter

Like variation in parameter k, the performance of MLFLD is monitored by varying

the value of the smoothing parameter between 0.25 and 1 with a step of 0.25. It is noticed

that variation in the smoothing factor has little effect on the performance of MLFLD.
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7.6 Concluding Remarks

The previous section provides observations about the performance of the proposed

algorithms. To summarize,

� For this work, the hypothesis is that the use of label dissimilarity along with feature

similarity can enhance the performance of a lazy learner such as the nearest neighbor

(kNN) based multi-label classifier. The work proposes two novel multi-label classi-

fication algorithms called MLFLD and MLFLD-MAXP that incorporate the idea of

using label dissimilarity as well as feature similarity for deciding nearest neighbors.

� Empirical evaluation using benchmark datasets from various domains confirms the

hypothesis. It shows that both MLFLD and MLFLD-MAXP outperform all existing

approaches, including the best known MLkNN in terms of rank and number of wins.

� It also presents a trade-off between the performance and computation time to make

appropriate choice of suitable distance metrics.

� Though the time taken is more for MLFLD and MLFLD-MAXP, enhancement in the

accuracy is notable, which is essential in some applications like medical.

� MLFLD and MLFLD-MAXP dominate the state-of-the-art algorithms used for com-

parison for the subset accuracy and demonstrate their effectiveness. For searching

nearest neighbors, both algorithms use features along with labels of instances, as

observed in the dataset. It helps to increase the correct prediction of the label set,

causing growth in subset accuracy.

� The relative performance of MLFLD-MAXP is better than MLFLD for all measures

except hamming loss.

� For cross-validation, the higher performance of proposed algorithms is strongly no-

table, especially for subset accuracy because of its potential to find out complete label

sets. Both MLFLD and MLFLD-MAXP provide maximum wins.

� The grouping of instance selection and feature selection helps in further boosting the

performance of proposed algorithms.

� Both MLFLD and MLFLD-MAXP thus are superior to MLkNN, and can be better

choices for multi-label classification.
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7.7 Future Scope

The work may be extended further to perform the following tasks.

1. Use of the partial label set: Proposed algorithms make use of the whole label set to

compute the dissimilarity of labels. Instead of using the entire label set, it can be

tested whether the use of partial label set to measure label dissimilarities affects their

performance. It may be achieved using label correlations.

2. Handling of datasets containing nominal attributes: All the datasets used in this work

consists of numeric attributes only. There exist a few multi-label datasets that include

nominal attributes or a mix of nominal and numeric attributes. Further investigations

are needed to decide suitable modifications in proposed algorithms if any.

3. Dealing with Multi-class (class labels having more than two values) Multi-label clas-

sification: In the majority of datasets, class labels in datasets are binary. It may be

possible for class labels to have more than two values.

4. Processing datasets with class labels having a hierarchical relationship: All the datasets

used in this work possess class labels which are at the same level. There also exist

datasets that consist of labels arranged in the hierarchy. A label is described further

by sub-labels forming label hierarchy. A count of siblings and the depth of a label in

the hierarchy may be considered for classification.

5. Use of divide and conquer strategy or parallel processing to speed up the algorithm:

Proposed algorithms are designed as sequential algorithms. Both work well for smaller

datasets while take considerable time for large datasets. To reduce time, divide and

conquer strategy can be used, or parallel processing can be applied to handle large/big

datasets in a reasonable amount of time.
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